297,324 research outputs found

    Sparse component separation for accurate CMB map estimation

    Get PDF
    The Cosmological Microwave Background (CMB) is of premier importance for the cosmologists to study the birth of our universe. Unfortunately, most CMB experiments such as COBE, WMAP or Planck do not provide a direct measure of the cosmological signal; CMB is mixed up with galactic foregrounds and point sources. For the sake of scientific exploitation, measuring the CMB requires extracting several different astrophysical components (CMB, Sunyaev-Zel'dovich clusters, galactic dust) form multi-wavelength observations. Mathematically speaking, the problem of disentangling the CMB map from the galactic foregrounds amounts to a component or source separation problem. In the field of CMB studies, a very large range of source separation methods have been applied which all differ from each other in the way they model the data and the criteria they rely on to separate components. Two main difficulties are i) the instrument's beam varies across frequencies and ii) the emission laws of most astrophysical components vary across pixels. This paper aims at introducing a very accurate modeling of CMB data, based on sparsity, accounting for beams variability across frequencies as well as spatial variations of the components' spectral characteristics. Based on this new sparse modeling of the data, a sparsity-based component separation method coined Local-Generalized Morphological Component Analysis (L-GMCA) is described. Extensive numerical experiments have been carried out with simulated Planck data. These experiments show the high efficiency of the proposed component separation methods to estimate a clean CMB map with a very low foreground contamination, which makes L-GMCA of prime interest for CMB studies.Comment: submitted to A&

    How well do third-order aperture mass statistics separate E- and B-modes?

    Full text link
    With 3rd-order statistics of gravitational shear it will be possible to extract valuable cosmological information from ongoing and future weak lensing surveys which is not contained in standard 2nd-order statistics, due to the non-Gaussianity of the shear field. Aperture mass statistics are an appropriate choice for 3rd-order statistics due to their simple form and their ability to separate E- and B-modes of the shear. However, it has been demonstrated that 2nd-order aperture mass statistics suffer from E-/B-mode mixing because it is impossible to reliably estimate the shapes of close pairs of galaxies. This finding has triggered developments of several new 2nd-order statistical measures for cosmic shear. Whether the same developments are needed for 3rd-order shear statistics is largely determined by how severe this E-/B-mixing is for 3rd-order statistics. We test 3rd-order aperture mass statistics against E-/B-mode mixing, and find that the level of contamination is well-described by a function of θ/θmin\theta/\theta_{\rm min}, with θmin\theta_{\rm min} being the cut-off scale. At angular scales of θ>10  θmin\theta > 10 \;\theta_{\rm min}, the decrease in the E-mode signal due to E-/B-mode mixing is smaller than 1 percent, and the leakage into B-modes is even less. For typical small-scale cut-offs this E-/B-mixing is negligible on scales larger than a few arcminutes. Therefore, 3rd-order aperture mass statistics can safely be used to separate E- and B-modes and infer cosmological information, for ground-based surveys as well as forthcoming space-based surveys such as Euclid.Comment: references added, A&A publishe

    An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation

    Get PDF
    We present and test an extension of slow feature analysis as a novel approach to nonlinear blind source separation. The algorithm relies on temporal correlations and iteratively reconstructs a set of statistically independent sources from arbitrary nonlinear instantaneous mixtures. Simulations show that it is able to invert a complicated nonlinear mixture of two audio signals with a reliability of more than 9090\%. The algorithm is based on a mathematical analysis of slow feature analysis for the case of input data that are generated from statistically independent sources
    corecore