25,471 research outputs found

    Conditioning of Random Block Subdictionaries with Applications to Block-Sparse Recovery and Regression

    Full text link
    The linear model, in which a set of observations is assumed to be given by a linear combination of columns of a matrix, has long been the mainstay of the statistics and signal processing literature. One particular challenge for inference under linear models is understanding the conditions on the dictionary under which reliable inference is possible. This challenge has attracted renewed attention in recent years since many modern inference problems deal with the "underdetermined" setting, in which the number of observations is much smaller than the number of columns in the dictionary. This paper makes several contributions for this setting when the set of observations is given by a linear combination of a small number of groups of columns of the dictionary, termed the "block-sparse" case. First, it specifies conditions on the dictionary under which most block subdictionaries are well conditioned. This result is fundamentally different from prior work on block-sparse inference because (i) it provides conditions that can be explicitly computed in polynomial time, (ii) the given conditions translate into near-optimal scaling of the number of columns of the block subdictionaries as a function of the number of observations for a large class of dictionaries, and (iii) it suggests that the spectral norm and the quadratic-mean block coherence of the dictionary (rather than the worst-case coherences) fundamentally limit the scaling of dimensions of the well-conditioned block subdictionaries. Second, this paper investigates the problems of block-sparse recovery and block-sparse regression in underdetermined settings. Near-optimal block-sparse recovery and regression are possible for certain dictionaries as long as the dictionary satisfies easily computable conditions and the coefficients describing the linear combination of groups of columns can be modeled through a mild statistical prior.Comment: 39 pages, 3 figures. A revised and expanded version of the paper published in IEEE Transactions on Information Theory (DOI: 10.1109/TIT.2015.2429632); this revision includes corrections in the proofs of some of the result

    Approximate cross-validation formula for Bayesian linear regression

    Full text link
    Cross-validation (CV) is a technique for evaluating the ability of statistical models/learning systems based on a given data set. Despite its wide applicability, the rather heavy computational cost can prevent its use as the system size grows. To resolve this difficulty in the case of Bayesian linear regression, we develop a formula for evaluating the leave-one-out CV error approximately without actually performing CV. The usefulness of the developed formula is tested by statistical mechanical analysis for a synthetic model. This is confirmed by application to a real-world supernova data set as well.Comment: 5 pages, 2 figures, invited paper for Allerton2016 conferenc

    Rectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem

    Full text link
    In this paper, we develop a Bayesian evidence maximization framework to solve the sparse non-negative least squares (S-NNLS) problem. We introduce a family of probability densities referred to as the Rectified Gaussian Scale Mixture (R- GSM) to model the sparsity enforcing prior distribution for the solution. The R-GSM prior encompasses a variety of heavy-tailed densities such as the rectified Laplacian and rectified Student- t distributions with a proper choice of the mixing density. We utilize the hierarchical representation induced by the R-GSM prior and develop an evidence maximization framework based on the Expectation-Maximization (EM) algorithm. Using the EM based method, we estimate the hyper-parameters and obtain a point estimate for the solution. We refer to the proposed method as rectified sparse Bayesian learning (R-SBL). We provide four R- SBL variants that offer a range of options for computational complexity and the quality of the E-step computation. These methods include the Markov chain Monte Carlo EM, linear minimum mean-square-error estimation, approximate message passing and a diagonal approximation. Using numerical experiments, we show that the proposed R-SBL method outperforms existing S-NNLS solvers in terms of both signal and support recovery performance, and is also very robust against the structure of the design matrix.Comment: Under Review by IEEE Transactions on Signal Processin
    • …
    corecore