3,762 research outputs found

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Velocity profile measurement of solid particles using LED as a light source

    Get PDF
    Optical sensors have been widely available and used in medical applications and industries for decades. Its design comes in a wide range of varieties where each are tailored based on its type, use, size, nature of investigated materials etc. In this work, we focus on the development and investigation of an optical sensing module, which uses Light Emitting Diode (LED) as the light source and LED photosensor as detector. This sensor is to measure the velocity of a solid particle in a gas flow inside a closed pipe. Various factors such as power dissipation, wavelength of the light source, switching time and cost are considered in the design process of this sensor. The cross correlation technique is used to determine the flow rate where small particles were introduced in a natural gas flow and they went through two distanced sets of sensor module. The LED beam source in the first set of sensor will be scattered when the particle crosses it then the corresponding photodetector will collect the light signal received and generates a pulse signal. The second pulse signal is generated when the particle crosses the second set of sensor after an interval of time. The time interval measured is used to calculate the velocity of the flow. An analysis of the received pulse signals is made to determine the best configurations of the sensors. At the end of this study, we were able to develop a simple, working, and cost effective sensing module

    Modeling, identification and control of a cold flow circulating fluidized bed

    Get PDF
    Circulating fluidized bed (CFB) is used extensively in petrochemical industries especially for fluid catalytic cracking, coal combustion or gasification and various other chemical processes. In this work, data are used to identify cold flow circulating fluidized bed\u27s (CFCFB) multiple sub models and to combine them into a single nonlinear model such that solids circulation rate can be estimated from the move air flow and riser aeration fed to the device, and the total pressure drop developed across the riser at extremely different experimental conditions.;The present work begins with a complete black box model of a state-space description arising from the system identification and converts it into a model without any fictitious variable such that the interaction among the variables under consideration can be analyzed. Furthermore, this concept separates a state into stochastic and deterministic components which gives the nature of noise acting on the measurement device and rationalizes if there exists a certain relationship between independent and dependent variable. In this thesis, the state is a solids circulation rate. Independent parameters that comprise of aerations flow rates including move air flow, riser aeration and loop seal fluidization air are used to obtain deterministic component of a measured solids circulation rate. On the other hand, easily measurable dependent variables like the pressure drops across various sections of the machine are used to predict its stochastic counterpart.;A real time pressure drop model based on the Recursive Prediction Error Method (RPEM) is built to predict the split of move air flow between the standpipe and L-valve. The split estimate is of paramount importance while simulating the phenomenological model of the standpipe or in other applications, if required. Additional aeration fed across the various sections of standpipe act as the fluidization bias and their routes determination within the component may help to maintain their required level to assist in solids movement during operation while minimizing excessive flows. The path determination is also predicted using RPEM on a discrete time pressure drop model such that the user can operate them at the desired intensity according to their operating requirements.;Generally, a PID controller is not portable , i.e., a controller designed for one plant is usually not applicable to another plant. To resolve this long-standing issue of portable controllable design, the controller scaling method can be used to control similar plants that are different only in gain and frequency scales, thus avoiding tedious control redesign. The adaptive PID control algorithm is then tested on the benchmark NETL CFCFB plant by controlling solids circulation rate according to the reference solids flow rate obtained from the Knowlton\u27s correlation utilizing average voidage in a moving bed condition and the move air flow.;The optimal control of solids circulation rate affecting the heat and mass transfer characteristics which in turn impacts the efficiency of various chemical processes is necessary in CFB units. An example might be the catalytic systems that recirculate catalyst in a reaction/recirculation cycle. In the case of such units in which the addition of catalyst is small and need not be steady, the main solids flow-control problem is to maintain balanced inventories of catalyst in and controlled flow from and to the reactor and regenerator. This flow of solids from an oxidizing atmosphere to a reducing one, or vice versa, usually necessitates stripping gases from the interstices of the solids as well as gases absorbed by the particles. Steam is usually used for this purpose. The point of removal of the solids from the fluidized bed is usually under a lower pressure than the point of feed introduction into the carrier gas. The pressure is higher at the bottom of the solids draw-off pipe due to the relative flow of gas counter to the solids flow. The gas may either be flowing downward more slowly than the solids or upward. The standpipe may be fluidized, or the solids may be in moving packed bed flow with no expansion. Gas is introduced at the bottom (best for group B) or at about 3-m intervals along the standpipe (best for group A). The increasing pressure causes gas inside and between the particles to be compressed. Unless aeration gas is added, the solids could defluidize and become a moving fixed bed with a lower pressure head than that of fluidized solids. Thus, this observation leads to the fact that the gas velocity in the standpipe might be the main parameter to control the solids circulation rate. (Abstract shortened by UMI.)

    Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking

    Get PDF
    The Greek aperitif Ouzo is not only famous for its specific anise-flavored taste, but also for its ability to turn from a transparent miscible liquid to a milky-white colored emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions [H. Tan et al., Proc. Natl. Acad. Sci. USA 113(31) (2016) 8642]. Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water-ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-PIV measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence
    • …
    corecore