19,823 research outputs found

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    First results of a GNSS-R experiment from a stratospheric balloon over boreal forests

    Get PDF
    The empirical results of a global navigation satellite systems reflectometry (GNSS-R) experiment onboard the Balloon EXperiments for University Students (BEXUS) 17 stratospheric balloon performed north of Sweden over boreal forests show that the power of the reflected signals is nearly independent of the platform height for a high coherent integration time T-c = 20 ms. This experimental evidence shows a strong coherent component in the forward scattered signal, as compared with the incoherent component, that allows to be tracked. The bistatic coherent reflectivity is also evaluated as a function of the elevation angle, showing a decrease of similar to 6 dB when the elevation angle increases from 35. to 70 degrees. The received power presents a clearly multimodal behavior, which also suggests that the coherent scattering component may be taking place in different forest elements, i.e., soil, canopy, and through multiple reflections canopy-soil and soil-trunk. This experiment has provided the first GNSS-R data set over boreal forests. The evaluation of these results can be useful for the feasibility study of this technique to perform biomass monitoring that is a key factor to analyze the carbon cycle.Peer ReviewedPostprint (author's final draft

    Performance analysis of interferometric noise due to unequally powered interferers in optical networks

    Get PDF
    Interferometric crosstalk has been identified as the cause of performance limits in future transparent all-optical networks. A large number of studies have been conducted on this phenomenon using a vast array of evaluation techniques. However, most major studies have considered that although the interfering terms may differ in number, the power contribution that they all make will be identical for all interfering terms. Although this situation is easy to analyze, it does not necessarily represent the situation that is likely to occur in a real network, which will be constructed of nodes with different degrees of connectivity, quite possibly from different vendors, and therefore with differing crosstalk characteristics. This paper describes a study on the impact of unequally powered interfering terms using a rigorous analysis technique. To validate the use of the chosen technique, the paper begins by bench-marking a number of common evaluation techniques against empirically derived, experimentally verified noise performance formulas

    Free-Space Optical Communication for CubeSats in Low Lunar Orbit (LLO)

    Get PDF
    A fine pointing capability has been developed for laser beam pointing to augment body pointing by CubeSats. An application is made to CubeSats in Low Lunar Orbit (LLO), at 100 km. Body pointing was used by Aerospace Corporation for CubeSats in LEO in NASAs Optical Communications and Sensors Demonstration (OCSD) program. Computer simulations of this fine pointing capability have been applied to the OCSD program. With fine pointing, the spot size on the Earth could be reduced by a factor of eight with a reduction in laser output power by a factor of sixty-four, thereby mitigating the thermal load challenge on the CubeSats. The same reductions in spot size and laser output power can be achieved for CubeSats in LLO. The new method uses laser arrays for fine laser beam pointing and does not use moving parts. It combines a lens system and a VCSEL/Photodetector Array. For these electro-optical systems, reaction times to pointing changes and vibrations are on a nanosecond time scale, much faster than those for mechanical systems. Results from computer simulations will be presented

    Genesis of the 1000-Foot Arecibo Dish

    Get PDF
    The giant radar/radio astronomy dish near Arecibo, Puerto Rico, was conceived by William E. Gordon in early 1958 as a back-scattering radar system to measure the density and temperature of the Earth’s ionosphere up to a few thousand kilometers. Gordon calculated the required size of the antenna by using the Thomson cross-section for scattering by the electrons, and assuming that the elementary scattered waves would be incoherent. During the summer and autumn of 1958 Gordon led a study group that published a design report in December 1958. The report showed that a dish 1000 feet in diameter would be required, and described a limestone sinkhole in Puerto Rico that would make a suitable support for such a dish. Meanwhile, in November 1958, Kenneth L. Bowles per-formed an ionospheric radar experiment that showed that the Gordon calculation for the scattered power was roughly correct, but that the calculated spectral width was too big. The consequence of these results was that a dish substantially smaller than 1000 feet could have satisfied the original goals for the radar. However, from the spring of 1958 the value of 1000 feet had been in the minds of the study team, and a large suite of important experiments that such a dish could do had been identified. These apparently became the raison d’être for the project, and the possibility of shrinking the dish to accomplish only the original goals seems to have been ignored. The project was sold to a new federal funding agency, the Advanced Research Projects Agency (ARPA), which was interested, in part at least, because ballistic missiles traveled through the ionosphere and it was important to fully understand that environment. Gordon’s original calculation contained a remarkably beneficial error. Without it, it is doubtful that such a large dish would have been built

    All-optical pulse processing for advanced photonic communication system

    Get PDF
    This paper investigates the use of a two-photon absorption photodetector for high speed processing of ultrashort optical pulses in advanced photonic communication systems. Specifically the paper describes how the two-photon absorption photodetector maybe employed for chromatic dispersion monitoring in high-speed, wavelength division multiplexed networks, and also for reducing multiple access interference noise in an optical code division multiplexed system
    corecore