898 research outputs found

    Velocity Dealiased Spectral Estimators of Range Migrating Targets using a Single Low-PRF Wideband Waveform

    Get PDF
    Wideband radars are promising systems that may provide numerous advantages, like simultaneous detection of slow and fast moving targets, high range-velocity resolution classification, and electronic countermeasures. Unfortunately, classical processing algorithms are challenged by the range-migration phenomenon that occurs then for fast moving targets. We propose a new approach where the range migration is used rather as an asset to retrieve information about target velocitiesand, subsequently, to obtain a velocity dealiased mode. More specifically three new complex spectral estimators are devised in case of a single low-PRF (pulse repetition frequency) wideband waveform. The new estimation schemes enable one to decrease the level of sidelobes that arise at ambiguous velocities and, thus, to enhance the discrimination capability of the radar. Synthetic data and experimental data are used to assess the performance of the proposed estimators

    Adaptive algorithms for nonstationary time series

    Get PDF

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Application of adaptive equalisation to microwave digital radio

    Get PDF

    Study of communications data compression methods

    Get PDF
    A simple monochrome conditional replenishment system was extended to higher compression and to higher motion levels, by incorporating spatially adaptive quantizers and field repeating. Conditional replenishment combines intraframe and interframe compression, and both areas are investigated. The gain of conditional replenishment depends on the fraction of the image changing, since only changed parts of the image need to be transmitted. If the transmission rate is set so that only one fourth of the image can be transmitted in each field, greater change fractions will overload the system. A computer simulation was prepared which incorporated (1) field repeat of changes, (2) a variable change threshold, (3) frame repeat for high change, and (4) two mode, variable rate Hadamard intraframe quantizers. The field repeat gives 2:1 compression in moving areas without noticeable degradation. Variable change threshold allows some flexibility in dealing with varying change rates, but the threshold variation must be limited for acceptable performance

    Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram

    Get PDF
    Cardiac diseases are one of the major causes of death. Heart monitoring/diagnostic techniques have been developed over decades to address this concern. Monitoring a vital sign such as heart rate is a powerful technique for heart abnormalities detection (e.g., arrhythmia). The novelty of this work is that offers new heart rate detection methods which are both robust and adaptive compared to existing heart rate detec- tion methods. Utilized data sets in this research have been provided from two sources of PhysioNet and a research group. In this work, utilized methods for heart rate detection include Signal Energy Thresholding (SET), Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). To the best of the author’s knowledge, this work is the first to use EMD and EWT for heart rate detection from Seismocardiogram (SCG) signal. Obtained result from applying SET to ECG signal is selected as our ground truth. Then, all three methods are used for heart rate detection from the SCG signal. The average error of SET method, EWT and EMD respectively 13.9 ms, 13.8 ms and 16 ms. Based on the obtained results, EMD and EWT are promising techniques for heart rate detection and interpretation from the SCG signal. Another contribution of this work is arrhythmia detection using EWT. EWT provides us with the instantaneous frequency changes of the corresponding modes to ECG signal. Based on the estimated power spectral density of each mode, power spectral density of arrhythmia affected ECG is higher (≥ 50dB) compared to the power spectral density of a normal ECG (≤ 20dB). This provides the potential for arrhythmia detection using EWT

    Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram

    Get PDF
    Cardiac diseases are one of the major causes of death. Heart monitoring/diagnostic techniques have been developed over decades to address this concern. Monitoring a vital sign such as heart rate is a powerful technique for heart abnormalities detection (e.g., arrhythmia). The novelty of this work is that offers new heart rate detection methods which are both robust and adaptive compared to existing heart rate detec- tion methods. Utilized data sets in this research have been provided from two sources of PhysioNet and a research group. In this work, utilized methods for heart rate detection include Signal Energy Thresholding (SET), Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). To the best of the author’s knowledge, this work is the first to use EMD and EWT for heart rate detection from Seismocardiogram (SCG) signal. Obtained result from applying SET to ECG signal is selected as our ground truth. Then, all three methods are used for heart rate detection from the SCG signal. The average error of SET method, EWT and EMD respectively 13.9 ms, 13.8 ms and 16 ms. Based on the obtained results, EMD and EWT are promising techniques for heart rate detection and interpretation from the SCG signal. Another contribution of this work is arrhythmia detection using EWT. EWT provides us with the instantaneous frequency changes of the corresponding modes to ECG signal. Based on the estimated power spectral density of each mode, power spectral density of arrhythmia affected ECG is higher (≥ 50dB) compared to the power spectral density of a normal ECG (≤ 20dB). This provides the potential for arrhythmia detection using EWT

    FM airborne passive radar

    Get PDF
    The airborne application of Passive Bistatic Radar (PBR) is the latest evolution of the now established international interest in passive radar techniques. An airborne passive system is cheaper to construct, easier to cool, lighter and requires less power than a traditional active radar system. These properties make it ideal for installation on an Unmanned Aerial Vehicle (UAV), especially for the next generation of Low Observable (LO) UAVs, complementing the platforms LO design with an inherently Low Probability of Intercept (LPI) air-to-air and air-to-ground sensing capability. A comprehensive literature review identified a lack of practical and theoretical research in airborne passive bistatic radar and a quantitative model was designed in order to un- derstand the theoretical performance achievable using a hypothetical system and FM as the illuminator of opportunity. The results demonstrated a useable surveillance volume, assuming conservative estimates for the receiver parameters and allowed the scoping and specification of an airborne demonstrator system. The demonstrator system was subsequently designed and constructed and flown on airborne experiments to collect data for both air-to-air and air-to-ground operation analysis. Subsequent processing demonstrated the successful detection of air targets which correlated with the actual aircraft positions as recorded by a Mode-S/ADS-B receiver. This is the first time this has been conclusively demonstrated in the literature. Doppler Beam Sharpening was used to create a coarse resolution image allowing the normalised bistatic clutter RCS of the stationary surface clutter to be analysed. This is the first time this technique has been applied to an airborne passive system and has yielded the first quantitive values of normalised bistatic clutter RCS at VHF. This successful demonstration of airborne passive radar techniques provides the proof of concept and identifies the key research areas that need to be addressed in order to fully develop this technology

    Framework for a space shuttle main engine health monitoring system

    Get PDF
    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available
    • …
    corecore