2,235 research outputs found

    PURIFY: a new algorithmic framework for next-generation radio-interferometric imaging

    Get PDF
    In recent works, compressed sensing (CS) and convex opti- mization techniques have been applied to radio-interferometric imaging showing the potential to outperform state-of-the-art imaging algorithms in the field. We review our latest contributions [1, 2, 3], which leverage the versatility of convex optimization to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure promoted in a new software PURIFY (beta version) relies on the simultaneous-direction method of multipliers (SDMM). The performance of various sparsity priors is evaluated through simulations in the continuous visibility setting, confirming the superiority of our recent average sparsity approach SARA

    Compressed Sensing for Block-Sparse Smooth Signals

    Full text link
    We present reconstruction algorithms for smooth signals with block sparsity from their compressed measurements. We tackle the issue of varying group size via group-sparse least absolute shrinkage selection operator (LASSO) as well as via latent group LASSO regularizations. We achieve smoothness in the signal via fusion. We develop low-complexity solvers for our proposed formulations through the alternating direction method of multipliers

    Fast Image Recovery Using Variable Splitting and Constrained Optimization

    Full text link
    We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an 2\ell_2 data-fidelity term and a non-smooth regularizer. This formulation allows both wavelet-based (with orthogonal or frame-based representations) regularization or total-variation regularization. Our approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is then addressed with an augmented Lagrangian method. The proposed algorithm is an instance of the so-called "alternating direction method of multipliers", for which convergence has been proved. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is faster than the current state of the art methods.Comment: Submitted; 11 pages, 7 figures, 6 table
    corecore