34,656 research outputs found

    Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect

    Get PDF
    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions

    Nonlinear pulse shaping in fibres for pulse generation and optical processing

    Get PDF
    The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion

    Chromatic Dispersion Compensation in electrical domain via Signal Pre-distortion using a dual-drive Mach-Zehnder Modulator

    Get PDF
    In recent years, evolution of technology has contributed a major role in the field of optical communication systems. There is an ever growing demand for transmitting signals at higher data rates and compensating the transmission impairments simultaneously. Speed of the signal transmission down the optical fiber is limited by transmission impairments that are characterized as linear or nonlinear losses. In my thesis, I lay a special emphasis on linear loss especially chromatic dispersion and it\u27s effect on an optical signal down the fiber and study the compensation techniques in an electrical domain challenging the methods employed in an optical domain. In this digital world, there is an increase in the evolution of electrical components such as high speed memory units and low power consumption models. Electrical domain provides advantages in terms of processing the signal in a cost effective way and achieving the similar results with respect to the optical domain. In addition to the analysis, my investigation includes the effect of noise present in optical fiber communication systems and limitations of electrical components in achieving the compensation

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial

    Volterra-assisted Optical Phase Conjugation: a Hybrid Optical-Digital Scheme For Fiber Nonlinearity Compensation

    Get PDF
    Mitigation of optical fiber nonlinearity is an active research field in the area of optical communications, due to the resulting marked improvement in transmission performance. Following the resurgence of optical coherent detection, digital nonlinearity compensation (NLC) schemes such as digital backpropagation (DBP) and Volterra equalization have received much attention. Alternatively, optical NLC, and specifically optical phase conjugation (OPC), has been proposed to relax the digital signal processing complexity. In this work, a novel hybrid optical-digital NLC scheme combining OPC and a Volterra equalizer is proposed, termed Volterra-Assisted OPC (VAO). It has a twofold advantage: it overcomes the OPC limitation in asymmetric links and substantially enhances the performance of Volterra equalizers. The proposed scheme is shown to outperform both OPC and Volterra equalization alone by up to 4.2 dB in a 1000 km EDFA-amplified fiber link. Moreover, VAO is also demonstrated to be very robust when applied to long-transmission distances, with a 2.5 dB gain over OPC-only systems at 3000 km. VAO combines the advantages of both optical and digital NLC offering a promising trade-off between performance and complexity for future high-speed optical communication systems

    Revisiting Multi-Step Nonlinearity Compensation with Machine Learning

    Get PDF
    For the efficient compensation of fiber nonlinearity, one of the guiding principles appears to be: fewer steps are better and more efficient. We challenge this assumption and show that carefully designed multi-step approaches can lead to better performance-complexity trade-offs than their few-step counterparts.Comment: 4 pages, 3 figures, This is a preprint of a paper submitted to the 2019 European Conference on Optical Communicatio

    Stochastic Digital Backpropagation with Residual Memory Compensation

    Full text link
    Stochastic digital backpropagation (SDBP) is an extension of digital backpropagation (DBP) and is based on the maximum a posteriori principle. SDBP takes into account noise from the optical amplifiers in addition to handling deterministic linear and nonlinear impairments. The decisions in SDBP are taken on a symbol-by-symbol (SBS) basis, ignoring any residual memory, which may be present due to non-optimal processing in SDBP. In this paper, we extend SDBP to account for memory between symbols. In particular, two different methods are proposed: a Viterbi algorithm (VA) and a decision directed approach. Symbol error rate (SER) for memory-based SDBP is significantly lower than the previously proposed SBS-SDBP. For inline dispersion-managed links, the VA-SDBP has up to 10 and 14 times lower SER than DBP for QPSK and 16-QAM, respectively.Comment: 7 pages, accepted to publication in 'Journal of Lightwave Technology (JLT)

    Impact of 4D channel distribution on the achievable rates in coherent optical communication experiments

    Get PDF
    We experimentally investigate mutual information and generalized mutual information for coherent optical transmission systems. The impact of the assumed channel distribution on the achievable rate is investigated for distributions in up to four dimensions. Single channel and wavelength division multiplexing (WDM) transmission over transmission links with and without inline dispersion compensation are studied. We show that for conventional WDM systems without inline dispersion compensation, a circularly symmetric complex Gaussian distribution is a good approximation of the channel. For other channels, such as with inline dispersion compensation, this is no longer true and gains in the achievable information rate are obtained by considering more sophisticated four-dimensional (4D) distributions. We also show that for nonlinear channels, gains in the achievable information rate can also be achieved by estimating the mean values of the received constellation in four dimensions. The highest gain for such channels is seen for a 4D correlated Gaussian distribution

    Time-Frequency Packing for High Capacity Coherent Optical Links

    Full text link
    We consider realistic long-haul optical links, with linear and nonlinear impairments, and investigate the application of time-frequency packing with low-order constellations as a possible solution to increase the spectral efficiency. A detailed comparison with available techniques from the literature will be also performed. We will see that this technique represents a feasible solution to overcome the relevant theoretical and technological issues related to this spectral efficiency increase and could be more effective than the simple adoption of high-order modulation formats.Comment: 10 pages, 9 figures. arXiv admin note: text overlap with arXiv:1406.5685 by other author
    • …
    corecore