2,117 research outputs found

    A scheme for cancelling intercarrier interference using conjugate transmission in multicarrier communication systems

    Get PDF
    To mitigate intercarrier interference (ICI), a two-path algorithm is developed for multicarrier communication systems, including orthogonal frequency division multiplexing (OFDM) systems. The first path employs the regular OFDM algorithm. The second path uses the conjugate transmission of the first path. The combination of both paths forms a conjugate ICI cancellation scheme at the receiver. This conjugate cancellation (CC) scheme provides (1) a high signal to interference power ratio (SIR) in the presence of small frequency offsets (50 dB and 33 dB higher than that of the regular OFDM and linear self-cancellation algorithms [1], [2], respectively, at ΔfT = 0.1% of subcarrier frequency spacing); (2) better bit error rate (BER) performance in both additive white Gaussian noise (AWGN) and fading channels; (3) backward compatibility with the existing OFDM system; (4) no channel equalization is needed for reducing ICI, a simple low cost receiver without increasing system complexity. Although the two-path transmission reduces bandwidth efficiency, the disadvantage can be balanced by increasing signal alphabet sizes

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Statistical characterization of correlation-based time/frequency synchronizers for OFDM

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has been widely adopted as a modulation format for reliable digital communication over multipath fading channels, e.g. IEEE 802.11g WiFi networks, as well as broadband wireline channels, e.g. DSL modems. However, its robustness to channel impairments comes at the cost of increased sensitivity to symbol timing and carrier frequency offset errors, and thus requires more complex synchronization methods than conventional single-carrier modulation formats. In this thesis, a class of synchronization methods based upon the intrinsic autocorrelation structure of the OFDM signal is studied from a statistical perspective. In particular, the reasons for the existence of irreducible time and frequency offset estimation errors in the limit of increasing signal-to-noise ratio (SNR) are investigated for correlator-based synchronizers for the non-fading channel case and several fading channel models. It is demonstrated that the primary source of irreducible synchronization errors at high SNR is the natural random distribution of signal energy in the cyclic prefix of the OFDM symbol. Comparisons of the distribution of correlator output magnitude between the non-fading and fading channel cases demonstrates that fading skews the distribution with respect to the non-fading case. A potential mechanism for reducing the effect of innate signal energy variability, correlator output windowed averaging, is studied from the perspective of its influence on the distribution of interpeak intervals in the temporal correlator output signal. While improved performance is realized through averaging for the non-fading channel case, this technique is not as effective for fading channels. In either instance, the windowed averaging method increases the latency of the synchronization process and thus introduces delay in the overall demodulation process

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Advanced classification of OFDM and MIMO signals with enhanced second order cyclostationarity detection

    Get PDF
    With the emergence of cognitive radio and the introduction of new modulation techniques such as OFDM and MIMO, the problem of Modulation Classification (MC) becomes more challenging and complicated. In the first part of the thesis, we explore the automatic modulation classification to blindly distinguish OFDM from single carrier signals. We use the fourth order cumulants; an approach which in the past has been also applied to classify single carrier signals. A blind OFDM parameter estimation scheme was then followed, which includes the estimation of number of subcarriers, CP length, timing and frequency offset and the oversampling factor for the OFDM signal. For the second part of the thesis, we improve the statistical signal processing techniques that were used in the first part. Particularly, the second order cyclostationarity based methods have been examined and improved. Based on the fact that most of the cyclostationary communication signals has a real cyclostationary part and a complex non-cyclostaionary part, we suggest an approach that enhance the second order cyclostationarity and hence increase its probability of detection. Using such improved second-order cyclostationarity, we present an improved synchronization method based on second order cyclostationarity. With the proposed approach, it is shown that the timing estimator, is independent of the frequency offset estimator, and therefore performs better than the previously proposed class of blind synchronization methods. To negate the dependence of the blind synchronization scheme on the prior knowledge of the raised cosine pulse shaping filters, we proposed a blind roll-off factor estimator based on the second order cyclostationarity. Last, we address the MIMO classification problem, wherein we estimate the number of transmitting antennas. Here the second order cyclostationarity test has been applied in distinguishing STC from BLAST modulation
    corecore