129 research outputs found

    OFDM Communication with Cooperative Relays

    Get PDF
    Signal fading due to multi-path propagation is one of the major impairments to meet the demands of next generation wireless networks for high data rate services. To mitigate the fading effects, time, frequency, and spatial diversity techniques or their hybrid can be used. Among different types of diversity techniques, spatial diversity is of special interest as is does not incur system losses in terms of delay and bandwidth efficiency.TelecommunicationsElectrical Engineering, Mathematics and Computer Scienc

    Physical-Layer Cooperation in Coded OFDM Relaying Systems

    Get PDF
    Mobile communication systems nowadays require ever-increasing data rate and coverage of wide areas. One promising approach to achieve this goal is the application of cooperative communications enabled by introducing intermediate nodes known as relays to support the transmission between terminals. By processing and forwarding the receive message at the relays, the path-loss effect between the source and the destination is mitigated. One major limit factor for relay assisted communications is that a relay cannot transmit and receive using the same physical resources. Therefore, a half-duplex constraint is commonly assumed resulting in halved spectral efficiency. To combat this drawback, two-way relaying is introduced, where two sources exchange information with each. On the other hand, due to the physical limitation of the relays, e.g., wireless sensor nodes, it's not possible to implement multiple antennas at one relay, which prohibits the application of multiple-input multiple-output (MIMO) techniques. However, when treating multiple relays as a cluster, a virtual antenna array is formed to perform MIMO techniques in a distributed manner. %This thesis aims at designing efficient one-way and two-way relaying schemes. Specifically, existing schemes from the literature are improved and new schemes are developed with the emphasis on coded orthogonal frequency division multiplexing (OFDM) transmissions. Of special interest is the application of physical-layer network coding (PLNC) for two-phase two-way relaying. In this case, a network coded message is estimated from the superimposed receive signal at the relay using PLNC schemes. The schemes are investigated based on a mutual information analysis and their performance are improved by a newly proposed phase control strategy. Furthermore, performance degradation due to system asynchrony is mitigated depending on different PLNC schemes. When multiple relays are available, novel cooperation schemes allowing information exchange within the relay cluster are proposed that facilitate distributed MIMO reception and transmission. Additionally, smart signaling approaches are presented to enable the cooperation at different levels with the cooperation overhead taken into account adequately in system performance evaluation

    Achievable rates of iterative MIMO receivers over interference channels

    Get PDF
    In this thesis, we study the achievable rates of some interference communication schemes when iterative interference-cancellation (IC) is applied. We assume multiple-input multiple-output (MIMO) communication employing iterative receivers with linear front-ends which involves two modules concatenated serially and cooperating iteratively; a linear combiner based on minimum-mean-square-error (MMSE) detection or maximal-ratio-combining (MRC) and a SISO decoder. We investigate the achievable rates of this receiver when the transmitted signal is Gaussian-distributed with hypothetical erasure-type feedback from the decoder to the combiner and a more practical case with large-size QAM constellations with log-likelihood-ratios (LLRs) being exchanged between the receiver's modules. The achievable rate is approximated by the area below the EXIT curve of the linear FE receiver. Some properties have been observed and mathematically been proved about the iterative MIMO receivers with linear front-end

    Cooperative systems based signal processing techniques with applications to three-dimensional video transmission

    Get PDF
    Three-dimensional (3-D) video has recently emerged to offer an immersive multimedia experience that can not be offered by two-dimensional (2-D) video applications. Currently, both industry and academia are focused on delivering 3-D video services to wireless communication systems. Modern video communication systems currently adopt cooperative communication and orthogonal frequency division multiplexing (OFDM) as they are an attractive solution to combat fading in wireless communication systems and achieve high data-rates. However, this strong motivation to transmit the video signals over wireless systems faces many challenges. These are mainly channel bandwidth limitations, variations of signal-to-noise ratio (SNR) in wireless channels, and the impairments in the physical layer such as time varying phase noise (PHN), and carrier frequency offset (CFO). In response to these challenges, this thesis seeks to develop efficient 3-D video transmission methods and signal processing algorithms that can overcome the effects of error-prone wireless channels and impairments in the physical layer. In the first part of the thesis, an efficient unequal error protection (UEP) scheme, called video packet partitioning, and a new 3-D video transceiver structure are proposed. The proposed video transceiver uses switching operations between various UEP schemes based on the packet partitioning to achieve a trade- off between system complexity and performance. Experimental results show that the proposed system achieves significantly high video quality at different SNRs with the lowest possible bandwidth and system complexity compared to direct transmission schemes. The second part of the thesis proposes a new approach to joint source-channel coding (JSCC) that simultaneously assigns source code rates, the number of high and low priority packets, and channel code rates for the application, network, and physical layers, respectively. The proposed JSCC algorithm takes into account the rate budget constraint and the available instantaneous SNR of the best relay selection in cooperative systems. Experimental results show that the proposed JSCC algorithm outperforms existing algorithms in terms of peak signal-to-noise ratio (PSNR). In the third part of the thesis, a computationally efficient training based approach for joint channel, CFO, and PHN estimation in OFDM systems is pro- posed. The proposed estimator is based on an expectation conditional maximization (ECM) algorithm. To compare the estimation accuracy of the proposed estimator, the hybrid Cram´er-Rao lower bound (HCRB) of hybrid parameters of interest is derived. Next, to detect the signal in the presence of PHN, an iterative receiver based on the extended Kalman filter (EKF) for joint data detection and PHN mitigation is proposed. It is demonstrated by numerical simulations that, compared to existing algorithms, the performance of the proposed ECM-based estimator in terms of the mean square error (MSE) is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high SNRs. Finally, this study extends the research on joint channel, PHN, and CFO estimation one step forward from OFDM systems to cooperative OFDM systems. An iterative algorithm based on the ECM in cooperative OFDM networks in the presence of unknown channel gains, PHNs and CFOs is applied. Moreover, the HCRB for the joint estimation problem in both decode-and-forward (DF) and amplify-and-forward (AF) relay systems is presented. An iterative algorithm based on the EKF for data detection and tracking the unknown time-varying PHN throughout the OFDM data packet is also used. For more efficient 3-D video transmission, the estimation algorithms and UEP schemes based packet portioning were combined to achieve a more robust video bit stream in the presence of PHNs. Applying this combination, simulation results demonstrate that promising bit-error-rate (BER) and PSNR performance can be achieved at the destination at different SNRs and PHN variance. The proposed schemes and algorithms offer solutions for existing problems in the techniques for applications to 3-D video transmission

    Doppler Shift Compensation Schemes in VANETs

    Get PDF

    AirShare: Distributed coherent transmission made seamless

    Get PDF
    Distributed coherent transmission is necessary for a variety of high-gain communication protocols such as distributed MIMO and creating codes over the air. Unfortunately, however, distributed coherent transmission is intrinsically difficult because different nodes are driven by independent clocks, which do not have the exact same frequency. This causes the nodes to have frequency offsets relative to each other, and hence their transmissions fail to combine coherently over the air. This paper presents AirShare, a primitive that makes distributed coherent transmission seamless. AirShare transmits a shared clock on the air and feeds it to the wireless nodes as a reference clock, hence eliminating the root cause for incoherent transmissions. The paper addresses the challenges in designing and delivering such a shared clock. It also implements AirShare in a network of USRP software radios, and demonstrates that it achieves tight phase coherence. Further, to illustrate AirShare's versatility, the paper uses it to deliver a coherent-radio abstraction on top of which it demonstrates two cooperative protocols: distributed MIMO, and distributed rate adaptation.National Science Foundation (U.S.

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems

    Carrier frequency offset estimation for orthogonal frequency division multiplexing systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is an attractive modulation scheme used in wideband communications because it essentially transforms the frequency selective channel into a flat fading channel. Furthermore, the combination of multiple-input multiple-output (MIMO) signal processing and OFDM seems to be an ideal solution for supporting reliable high data rate transmission for future wireless communication systems. However, despite the great advantages OFDM systems offer, such systems present challenges of their own. One of the most important challenges is carrier frequency offset (CFO) estimation, which is crucial in building reliable wireless communication systems. In this thesis, we consider CFO estimation for the downlink and uplink OFDM systems. For the downlink channel, we focus on blind schemes where the cost functions are designed such that they exploit implicit properties associated with the transmitted signal where no training signal is required. By taking the unconditional maximum likelihood approach, we propose a virtual subcarrier based blind scheme for MIMO-OFDM systems in the presence of spatial correlation. We conclude that the presence of spatial correlation does not impact the CFO estimation significantly. We also propose a CFO estimator for OFDM systems with constant modulus signaling and extend it to MIMO-OFDM systems employing orthogonal space-time block coding. The curve fitting method is used which gives a closed-form expression for CFO estimation. Therefore, the proposed scheme provides an excellent trade-off between complexity and performance as compared to prominent existing estimation schemes. Furthermore, we design a blind CFO estimation scheme for differentially modulated OFDM systems based on the finite alphabet constraint. It can achieve better performance at high signal-to-noise ratios (SNRs) at the expense of some additional computational complexity as compared to the schemes based on the constant modulus constraint. The constrained Cramer-Rao lower bound (CRLB) is also derived for the blind estimation scheme. As for the uplink channel, which is a more challenging problem, we propose two training aided schemes. One is based on a scalar extended Kalman filter (EKF) and the other one is on the variable projection (VP) algorithm. For both schemes, we assume that the system uses an arbitrary subcarrier assignment scheme, which is more involved than the other two schemes, namely block and interleaved subcarrier assignment scheme. In the first scheme, to apply the scalar EKF algorithm, we represent the measurement equation as a function of a scalar state, i.e., each user's CFO, in lieu of a state vector which consists of both CFO and channel coefficients by replacing the unknown channel coefficients with a nonlinear function of CFO. This proposed scheme can achieve the CRLB at high SNR for two users with a complexity lower than that of the alternating-projection method. In the second scheme, the VP algorithm is used for CFO estimation which is followed with a robust minimum mean square error (MMSE) estimator for channel estimation. In the VP algorithm, the nonlinear least square cost function is optimized numerically by updating the CFOs and channel coefficients separately at each iteration. We demonstrate that this proposed scheme is superior to the existing methods in terms of convergence speed, computational complexity and estimation performance
    • …
    corecore