46 research outputs found

    Signal Detection for Cognitive Radios with Smashed Filtering

    Get PDF
    Compressed Sensing and the related recently intro duced Smashed Filter are novel signal processing methods, which allow for low-complexity parameter estimation by projecting the signal under analysis on a random subspace. In this paper the Smashed Filter of Davenport et al. is applied to a principal problem of digital communications: pilot-based time offset and frequency offset estimation. An application, motivated by current Cognitive Radio research, is wide-band detection of a narrow-band signal, e.g. to synchronize terminals without prior channel or frequency allocation. Smashed Filter estimation and maximum likelihood-based, uncompressed estimation for a signal corrupted by additive white Gaussian noise (Matched Filter estimation) are compared. Smashed Filtering adds a degree of freedom to signal detection and estimation problems, which effectively allows to trade signal-to-noise ratio against processing bandwidth for arbitrary signals

    Signal-Processing-Driven Integrated Circuits for Energy Constrained Microsystems.

    Full text link
    The exponential growth in IC technology has enabled low-cost and increasingly capable wireless sensor nodes which provide a promising way forward to realize the vision of a trillion connected sensors in the next decade. However there are still many design challenges ahead to make these sensor nodes small,low-cost,secure,reliable and energy-efficient to name a few. Since the wireless nodes are expected to operate on a limited energy source or in some cases on harvested energy, the energy consumption of each building block is of prime importance to prolong the life of a sensor node. It has been found that the radio communication when active has been one of the highest power consuming modules on a sensor node. Low-energy protocols, e.g. processing the raw sensor data on-node, are more energy efficient for some applications as compared to transmitting the raw data over a wireless channel to a cloud server. In this thesis we explore signal processing techniques to realize a low power radio solution for wireless communication. Two prototype chips have been designed and their performance has been evaluated. The first prototype chip exploits compressed sensing for Ultra-Wide-Band (UWB) communication. UWB signals typically require a high ADC sampling rate in the receiver which results in high power consumption. Compressed sensing is demonstrated to relax the ADC sampling rate to save power. The second prototype chip exploits the sensitivity vs. power trade-off in a radio receiver to achieve iso-performance at lower power consumption and the time-varying wireless channel characteristics are used to adapt the sampling frequency of the receiver based on the SNR/Link quality of the communication channel, saving power, while maintaining the desired system performance. It is envisioned that embedded machine learning will play a key role in the integration of sensory data with prior knowledge for distributed intelligent sensing which might enable reduced wireless network traffic to a cloud server. A Near-Threshold hardware accelerator for arbitrary Bayesian network was designed for clique-tree message passing algorithm used for probabilistic inference. The hardware accelerator was benchmarked by the mid-size ALARM Bayesian network with total energy consumption of 76nJ for 250µS execution time.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107130/1/oukhan_1.pd

    Autoregressive process parameters estimation from Compressed Sensing measurements and Bayesian dictionary learning

    Get PDF
    The main contribution of this thesis is the introduction of new techniques which allow to perform signal processing operations on signals represented by means of compressed sensing. Exploiting autoregressive modeling of the original signal, we obtain a compact yet representative description of the signal which can be estimated directly in the compressed domain. This is the key concept on which the applications we introduce rely on. In fact, thanks to proposed the framework it is possible to gain information about the original signal given compressed sensing measurements. This is done by means of autoregressive modeling which can be used to describe a signal through a small number of parameters. We develop a method to estimate these parameters given the compressed measurements by using an ad-hoc sensing matrix design and two different coupled estimators that can be used in different scenarios. This enables centralized and distributed estimation of the covariance matrix of a process given the compressed sensing measurements in a efficient way at low communication cost. Next, we use the characterization of the original signal done by means of few autoregressive parameters to improve compressive imaging. In particular, we use these parameters as a proxy to estimate the complexity of a block of a given image. This allows us to introduce a novel compressive imaging system in which the number of allocated measurements is adapted for each block depending on its complexity, i.e., spatial smoothness. The result is that a careful allocation of the measurements, improves the recovery process by reaching higher recovery quality at the same compression ratio in comparison to state-of-the-art compressive image recovery techniques. Interestingly, the parameters we are able to estimate directly in the compressed domain not only can improve the recovery but can also be used as feature vectors for classification. In fact, we also propose to use these parameters as more general feature vectors which allow to perform classification in the compressed domain. Remarkably, this method reaches high classification performance which is comparable with that obtained in the original domain, but with a lower cost in terms of dataset storage. In the second part of this work, we focus on sparse representations. In fact, a better sparsifying dictionary can improve the Compressed Sensing recovery performance. At first, we focus on the original domain and hence no dimensionality reduction by means of Compressed Sensing is considered. In particular, we develop a Bayesian technique which, in a fully automated fashion, performs dictionary learning. More in detail, using the uncertainties coming from atoms selection in the sparse representation step, this technique outperforms state-of-the-art dictionary learning techniques. Then, we also address image denoising and inpainting tasks using the aforementioned technique with excellent results. Next, we move to the compressed domain where a better dictionary is expected to provide improved recovery. We show how the Bayesian dictionary learning model can be adapted to the compressive case and the necessary assumptions that must be made when considering random projections. Lastly, numerical experiments confirm the superiority of this technique when compared to other compressive dictionary learning techniques

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    Compressed Sensing in Multi-Signal Environments.

    Full text link
    Technological advances and the ability to build cheap high performance sensors make it possible to deploy tens or even hundreds of sensors to acquire information about a common phenomenon of interest. The increasing number of sensors allows us to acquire ever more detailed information about the underlying scene that was not possible before. This, however, directly translates to increasing amounts of data that needs to be acquired, transmitted, and processed. The amount of data can be overwhelming, especially in applications that involve high-resolution signals such as images or videos. Compressed sensing (CS) is a novel acquisition and reconstruction scheme that is particularly useful in scenarios when high resolution signals are difficult or expensive to encode. When applying CS in a multi-signal scenario, there are several aspects that need to be considered such as the sensing matrix, the joint signal model, and the reconstruction algorithm. The purpose of this dissertation is to provide a complete treatment of these aspects in various multi-signal environments. Specific applications include video, multi-view imaging, and structural health monitoring systems. For each application, we propose a novel joint signal model that accurately captures the joint signal structure, and we tailor the reconstruction algorithm to each signal model to successfully recover the signals of interest.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98007/1/jaeypark_1.pd
    corecore