1,395,271 research outputs found

    Long signal change-point detection

    Get PDF
    The detection of change-points in a spatially or time ordered data sequence is an important problem in many fields such as genetics and finance. We derive the asymptotic distribution of a statistic recently suggested for detecting change-points. Simulation of its estimated limit distribution leads to a new and computationally efficient change-point detection algorithm, which can be used on very long signals. We assess the algorithm via simulations and on previously benchmarked real-world data sets

    Journal of Near-Death Studies

    Get PDF
    Here we derive measures quantifying the information loss of a synaptic signal due to the presence of neuronal noise sources, as it electrotonically propagates along a weakly-active dendrite. We model the dendrite as an infinite linear cable, with noise sources distributed along its length. The noise sources we consider are thermal noise, channel noise arising from the stochastic nature of voltage-dependent ionic channels (K^+ and Na^+) and synaptic noise due to spontaneous background activity. We assess the efficacy of information transfer using a signal detection paradigm where the objective is to detect the presence/absence of a presynaptic spike from the post-synaptic membrane voltage. This allows us to analytically assess the role of each of these noise sources in information transfer. For our choice of parameters, we find that the synaptic noise is the dominant noise source which limits the maximum length over which information be reliably transmitted

    Passive detection of moving aerial target based on multiple collaborative GPS satellites

    Get PDF
    Passive localization is an important part of intelligent surveillance in security and emergency applications. Nowadays, Global Navigation Satellite Systems (GNSSs) have been widely deployed. As a result, the satellite signal receiver may receive multiple GPS signals simultaneously, incurring echo signal detection failure. Therefore, in this paper, a passive method leveraging signals from multiple GPS satellites is proposed for moving aerial target detection. In passive detection, the first challenge is the interference caused by multiple GPS signals transmitted upon the same spectrum resources. To address this issue, successive interference cancellation (SIC) is utilized to separate and reconstruct multiple GPS signals on the reference channel. Moreover, on the monitoring channel, direct wave and multi-path interference are eliminated by extensive cancellation algorithm (ECA). After interference from multiple GPS signals is suppressed, the cycle cross ambiguity function (CCAF) of the signal on the monitoring channel is calculated and coordinate transformation method is adopted to map multiple groups of different time delay-Doppler spectrum into the distance−velocity spectrum. The detection statistics are calculated by the superposition of multiple groups of distance-velocity spectrum. Finally, the echo signal is detected based on a properly defined adaptive detection threshold. Simulation results demonstrate the effectiveness of our proposed method. They show that the detection probability of our proposed method can reach 99%, when the echo signal signal-to-noise ratio (SNR) is only −64 dB. Moreover, our proposed method can achieve 5 dB improvement over the detection method using a single GPS satellite

    Sequential joint signal detection and signal-to-noise ratio estimation

    Full text link
    The sequential analysis of the problem of joint signal detection and signal-to-noise ratio (SNR) estimation for a linear Gaussian observation model is considered. The problem is posed as an optimization setup where the goal is to minimize the number of samples required to achieve the desired (i) type I and type II error probabilities and (ii) mean squared error performance. This optimization problem is reduced to a more tractable formulation by transforming the observed signal and noise sequences to a single sequence of Bernoulli random variables; joint detection and estimation is then performed on the Bernoulli sequence. This transformation renders the problem easily solvable, and results in a computationally simpler sufficient statistic compared to the one based on the (untransformed) observation sequences. Experimental results demonstrate the advantages of the proposed method, making it feasible for applications having strict constraints on data storage and computation.Comment: 5 pages, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 201

    Experimental detection using cyclostationary feature detectors for cognitive radios

    Get PDF
    © 2014 IEEE. Signal detection is widely used in many applications. Some examples include Cognitive Radio (CR) and military intelligence. Without guaranteed signal detection, a CR cannot reliably perform its role. Spectrum sensing is currently one of the most challenging problems in cognitive radio design because of various factors such as multi-path fading and signal to noise ratio (SNR). In this paper, we particularly focus on the detection method based on cyclostationary feature detectors (CFD) estimation. The advantage of CFD is its relative robustness against noise uncertainty compared with energy detection methods. The experimental result present in this paper show that the cyclostationary feature-based detection can be robust compared to energy-based technique for low SNR levels
    • …