1,358 research outputs found

    Sign Spotting using Hierarchical Sequential Patterns with Temporal Intervals

    Get PDF
    This paper tackles the problem of spotting a set of signs occuring in videos with sequences of signs. To achieve this, we propose to model the spatio-temporal signatures of a sign using an extension of sequential patterns that contain temporal intervals called Sequential Interval Patterns (SIP). We then propose a novel multi-class classifier that organises different sequential interval patterns in a hierarchical tree structure called a Hierarchical SIP Tree (HSP-Tree). This allows one to exploit any subsequence sharing that exists between different SIPs of different classes. Multiple trees are then combined together into a forest of HSP-Trees resulting in a strong classifier that can be used to spot signs. We then show how the HSP-Forest can be used to spot sequences of signs that occur in an input video. We have evaluated the method on both concatenated sequences of isolated signs and continuous sign sequences. We also show that the proposed method is superior in robustness and accuracy to a state of the art sign recogniser when applied to spotting a sequence of signs.This work was funded by the UK government

    Sign Spotting Using Hierarchical Sequential Patterns with Temporal Intervals

    Full text link

    Personalized face and gesture analysis using hierarchical neural networks

    Full text link
    The video-based computational analyses of human face and gesture signals encompass a myriad of challenging research problems involving computer vision, machine learning and human computer interaction. In this thesis, we focus on the following challenges: a) the classification of hand and body gestures along with the temporal localization of their occurrence in a continuous stream, b) the recognition of facial expressivity levels in people with Parkinson's Disease using multimodal feature representations, c) the prediction of student learning outcomes in intelligent tutoring systems using affect signals, and d) the personalization of machine learning models, which can adapt to subject and group-specific nuances in facial and gestural behavior. Specifically, we first conduct a quantitative comparison of two approaches to the problem of segmenting and classifying gestures on two benchmark gesture datasets: a method that simultaneously segments and classifies gestures versus a cascaded method that performs the tasks sequentially. Second, we introduce a framework that computationally predicts an accurate score for facial expressivity and validate it on a dataset of interview videos of people with Parkinson's disease. Third, based on a unique dataset of videos of students interacting with MathSpring, an intelligent tutoring system, collected by our collaborative research team, we build models to predict learning outcomes from their facial affect signals. Finally, we propose a novel solution to a relatively unexplored area in automatic face and gesture analysis research: personalization of models to individuals and groups. We develop hierarchical Bayesian neural networks to overcome the challenges posed by group or subject-specific variations in face and gesture signals. We successfully validate our formulation on the problems of personalized subject-specific gesture classification, context-specific facial expressivity recognition and student-specific learning outcome prediction. We demonstrate the flexibility of our hierarchical framework by validating the utility of both fully connected and recurrent neural architectures

    Sign language video retrieval with free-form textual queries

    Get PDF
    Systems that can efficiently search collections of sign language videos have been highlighted as a useful application of sign language technology. However, the problem of searching videos beyond individual keywords has received limited attention in the literature. To address this gap, in this work we introduce the task of sign language retrieval with textual queries: given a written query (e.g. a sentence) and a large collection of sign language videos, the objective is to find the signing video that best matches the written query. We propose to tackle this task by learning cross-modal embeddings on the recently introduced large-scale How2Sign dataset of American Sign Language (ASL). We identify that a key bottleneck in the performance of the system is the quality of the sign video embedding which suffers from a scarcity of labelled training data. We, therefore, propose SPOT-ALIGN, a framework for interleaving iterative rounds of sign spotting and feature alignment to expand the scope and scale of available training data. We validate the effectiveness of SPOT-ALIGN for learning a robust sign video embedding through improvements in both sign recognition and the proposed video retrieval task.This work was supported by the project PID2020-117142GB-I00, funded by MCIN/ AEI /10.13039/501100011033, ANR project CorVis ANR-21-CE23-0003- 01, and gifts from Google and Adobe. AD received support from la Caixa Foundation (ID 100010434), fellowship code LCF/BQ/IN18/11660029.Peer ReviewedObjectius de Desenvolupament Sostenible::10 - Reducció de les DesigualtatsObjectius de Desenvolupament Sostenible::10 - Reducció de les Desigualtats::10.2 - Per a 2030, potenciar i promoure la inclusió social, econòmica i política de totes les persones, independentment de l’edat, sexe, discapacitat, raça, ètnia, origen, religió, situació econòmica o altra condicióPostprint (author's final draft

    Watch, read and lookup: learning to spot signs from multiple supervisors

    Full text link
    The focus of this work is sign spotting - given a video of an isolated sign, our task is to identify whether and where it has been signed in a continuous, co-articulated sign language video. To achieve this sign spotting task, we train a model using multiple types of available supervision by: (1) watching existing sparsely labelled footage; (2) reading associated subtitles (readily available translations of the signed content) which provide additional weak-supervision; (3) looking up words (for which no co-articulated labelled examples are available) in visual sign language dictionaries to enable novel sign spotting. These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning. We validate the effectiveness of our approach on low-shot sign spotting benchmarks. In addition, we contribute a machine-readable British Sign Language (BSL) dictionary dataset of isolated signs, BSLDict, to facilitate study of this task. The dataset, models and code are available at our project page.Comment: Appears in: Asian Conference on Computer Vision 2020 (ACCV 2020) - Oral presentation. 29 page

    BSL-1K: Scaling up co-articulated sign language recognition using mouthing cues

    Get PDF
    Recent progress in fine-grained gesture and action classification, and machine translation, point to the possibility of automated sign language recognition becoming a reality. A key stumbling block in making progress towards this goal is a lack of appropriate training data, stemming from the high complexity of sign annotation and a limited supply of qualified annotators. In this work, we introduce a new scalable approach to data collection for sign recognition in continuous videos. We make use of weakly-aligned subtitles for broadcast footage together with a keyword spotting method to automatically localise sign-instances for a vocabulary of 1,000 signs in 1,000 hours of video. We make the following contributions: (1) We show how to use mouthing cues from signers to obtain high-quality annotations from video data - the result is the BSL-1K dataset, a collection of British Sign Language (BSL) signs of unprecedented scale; (2) We show that we can use BSL-1K to train strong sign recognition models for co-articulated signs in BSL and that these models additionally form excellent pretraining for other sign languages and benchmarks - we exceed the state of the art on both the MSASL and WLASL benchmarks. Finally, (3) we propose new large-scale evaluation sets for the tasks of sign recognition and sign spotting and provide baselines which we hope will serve to stimulate research in this area.Comment: Appears in: European Conference on Computer Vision 2020 (ECCV 2020). 28 page

    A random forest approach to segmenting and classifying gestures

    Full text link
    This thesis investigates a gesture segmentation and recognition scheme that employs a random forest classification model. A complete gesture recognition system should localize and classify each gesture from a given gesture vocabulary, within a continuous video stream. Thus, the system must determine the start and end points of each gesture in time, as well as accurately recognize the class label of each gesture. We propose a unified approach that performs the tasks of temporal segmentation and classification simultaneously. Our method trains a random forest classification model to recognize gestures from a given vocabulary, as presented in a training dataset of video plus 3D body joint locations, as well as out-of-vocabulary (non-gesture) instances. Given an input video stream, our trained model is applied to candidate gestures using sliding windows at multiple temporal scales. The class label with the highest classifier confidence is selected, and its corresponding scale is used to determine the segmentation boundaries in time. We evaluated our formulation in segmenting and recognizing gestures from two different benchmark datasets: the NATOPS dataset of 9,600 gesture instances from a vocabulary of 24 aircraft handling signals, and the CHALEARN dataset of 7,754 gesture instances from a vocabulary of 20 Italian communication gestures. The performance of our method compares favorably with state-of-the-art methods that employ Hidden Markov Models or Hidden Conditional Random Fields on the NATOPS dataset. We conclude with a discussion of the advantages of using our model
    corecore