8,978 research outputs found

    Fast and slow Kelvin waves in the Madden-Julian Oscillation of a GCM

    Get PDF
    The structure of the Madden-Julian Oscillation (MJO) in an 1800-day integration of the Hadley Centre Unified Model was analysed, and interpreted within a Kelvin wave framework. The model was forced with constant equinoctial (March) boundary conditions so that a ``clean'' MJO signal could be separated from the effects of the seasonal cycle and forced interannual variability. The simulated MJO was fairly realistic in terms of its large-scale spatial structure and propagation characteristics, although its period of 30 days (corresponding to an average phase speed of 15 \mps) was shorter than that observed. The signal in deep convection was less coherent than in observations, and appeared to move eastward as a sequence of discrete convective anomalies, rather than by a smooth eastward propagation. Both ``fast'' and ``slow'' equatorial Kelvin waves appeared to play an important role in the eastward propagation of the simulated MJO. Enhanced convection over the Indian Ocean was associated with a ``fast'' equatorial Kelvin wave that propagated eastward at 55 m s-1 over the Pacific. On reaching the west coast of South America, a component of this Kelvin wave propagated northward and southward as a trapped wave along the mountain ranges of Central America and the Andes, in agreement with observations. The anomalous surface easterlies over the tropical eastern Pacific associated with this fast Kelvin wave enhanced the climatological mean easterlies and led to positive convective anomalies over the eastern Pacific consistent with the WISHE mechanism. However, WISHE was not able to account for the eastward development of the convective anomalies over the Indian Ocean/western Pacific region. By splitting the equatorial divergence anomalies of the simulated MJO into their du/dx and dv/dy components, the role of Kelvin wave dynamics in the ``slow'' (15 m s-1) average eastward propagation of the simulated MJO was examined. Although the two components were of comparable magnitude, the \dudx\ component exhibited a pronounced eastward propagation which tended to be disrupted by the \dvdy\ component, thus supporting the paradigm of an underlying, but strongly modified, Kelvin wave mechanism

    Morphology and kinematics of the ionised gas in early-type galaxies

    Full text link
    We present results of our ongoing study of the morphology and kinematics of the ionised gas in 48 representative nearby elliptical and lenticular galaxies using the SAURON integral-field spectrograph on the 4.2m William Herschel Telescope. Making use of a recently developed technique, emission is detected in 75% of the galaxies. The ionised-gas distributions display varied morphologies, ranging from regular gas disks to filamentary structures. Additionally, the emission-line kinematic maps show, in general, regular motions with smooth variations in kinematic position angle. In most of the galaxies, the ionised-gas kinematics is decoupled from the stellar counterpart, but only some of them present signatures of recent accretion of gaseous material. The presence of dust is very common in our sample and is usually accompanied by gas emission. Our analysis of the [OIII]/Hbeta emission-line ratios, both across the whole sample as well as within the individual galaxies, suggests that there is no unique mechanism triggering the ionisation of the gas.Comment: 8 pages, 2 figures, submitted to "Adaptive Optics-Assisted Integral-Field Spectroscopy", Rutten R.G.M., Benn C.R., Mendez J., eds., May 2005, La Palma (Spain), New Astr. Rev. For full resolution PS, see http://www.strw.leidenuniv.nl/~jfalcon/JFB_AOmeeting_color_hires.ps.g

    A multi-sensor approach for volcanic ash cloud retrieval and eruption characterization: the 23 November 2013 Etna lava fountain

    Get PDF
    Volcanic activity is observed worldwide with a variety of ground and space-based remote sensing instruments, each with advantages and drawbacks. No single system can give a comprehensive description of eruptive activity, and so, a multi-sensor approach is required. This work integrates infrared and microwave volcanic ash retrievals obtained from the geostationary Meteosat Second Generation (MSG)-Spinning Enhanced Visible and Infrared Imager (SEVIRI), the polar-orbiting Aqua-MODIS and ground-based weather radar. The expected outcomes are improvements in satellite volcanic ash cloud retrieval (altitude, mass, aerosol optical depth and effective radius), the generation of new satellite products (ash concentration and particle number density in the thermal infrared) and better characterization of volcanic eruptions (plume altitude, total ash mass erupted and particle number density from thermal infrared to microwave). This approach is the core of the multi-platform volcanic ash cloud estimation procedure being developed within the European FP7-APhoRISM project. The Mt. Etna (Sicily, Italy) volcano lava fountaining event of 23 November 2013 was considered as a test case. The results of the integration show the presence of two volcanic cloud layers at different altitudes. The improvement of the volcanic ash cloud altitude leads to a mean difference between the SEVIRI ash mass estimations, before and after the integration, of about the 30%. Moreover, the percentage of the airborne “fine” ash retrieved from the satellite is estimated to be about 1%–2% of the total ash emitted during the eruption. Finally, all of the estimated parameters (volcanic ash cloud altitude, thickness and total mass) were also validated with ground-based visible camera measurements, HYSPLIT forward trajectories, Infrared Atmospheric Sounding Interferometer (IASI) satellite data and tephra deposits

    Integration of magnetic residuals,derivates and located euler deconvolution for structural and geologic mapping of parts of the precambrian gneisses of Ago-Iwoye, Southwestern Nigeria

    Get PDF
    Ground based magnetic survey conducted between longitude 06O 55I 51IIN –06O 55I 54IIN and latitude 03O 52I 06IIE –03O 52I 4.8IIE (Olabisi Onabanjo University) remarkably revealed a consistent subsurface NW -SE structural azimuth of localized discontinuities within the shallowly buried heterogeneous basement rocks, which at exposed locations are composed of strongly foliated granite gneiss and migmatite-gneiss with veins and veinlets principally orientated in NNW –SSE direction.Magnetic survey of the area was preceded by site inspection to avoid metallic objects interferences. Field procedure in the area involved Cartesian gridding, base station establishment, data acquisition at gridded points, and repeated bihourly diurnal checksat the base station. At the processing stage, diurnal variation effect was aptly removed before subjection to Kriging (gridding). The gridded data was then prepared as input for Forward Fourier Filter Transform (FFT), which upon definition and implementation enabled Butterworth filtering of isolated ringing effects, reduction to the equator (RTE) for geomagnetic correction, and the use of Gaussian and Upward Continuation filtering for regional magnetic intensity trend determination. Removal of the regional magnetic intensity (RMI) from the total magnetic intensity (TMI) resulted in the derivation of the residual anomaly. Enhancement filters adopted for better resolution of the residual magnetic gradient include analytical signal (AS), tilt-angle derivative (TDR), vertical derivative deconvolution (VDD), and the first vertical derivatives (FVD).TMI and RMI values range between 32925nT –33050nT and 32935nT –333050nT respectively, while the residual gradient ranges between 15nT/m and10nT/m; AS ranges between 0.28nT/m and4.1nT/m; and TDR ranges from-1.4nT/m to 1.4nT/m. Source depth calculation estimated from power spectrum analysis and Euler deconvolution ranges between 1m and15m. Composite overlay of magnetic maps revealed jointed and faulted zones within the area; exhibiting a NW-SE principal azimuth of Liberian orogenic impress, which are in consistence with the foliation direction of the jagged foliated bedrock with an estimated maximum overburden of about 15m.The structural significance of this area as a prospective hydro-geological centre, and as an undesirable spot for high-rise building has been accurately evaluated from research findings. Application of integrated geophysical approach, complemented by detailed geological studies may furnish greater information about the subsurface structural architecture.Keywords:Gneisses; Ground Magnetic Surveying;RTE;Structural discontinuities;TDR.1INTRODUCTIONStructuralmapping is an integral part of geologic surveys. It involves measurements, analyses, interpretation and recognition of geometrical features (structures) generated by rock deformations [1]. These structures often serve as fountains of environmental challenges or unparalleled opportunities depending on their modesof occurrences, which in most cases are imminently controlled by the dynamic interplay of differential stress distributions within the earth interior. In line with the principle of uniformitarianism, a broad understanding about Earth’s paleo processes and internal workingsare deductible from the various deformation types for diverse applications. Deductible inferences from brittle deformationsinclude the kinematics of crustal blocks, orientation of principal axes of regional and local stresses, and geometry. Deeper insights indeep seated stresses, regional movements and block motions are obtainable from ductile deformations
    • …
    corecore