30,309 research outputs found

    Ultra-Low-Power Superconductor Logic

    Full text link
    We have developed a new superconducting digital technology, Reciprocal Quantum Logic, that uses AC power carried on a transmission line, which also serves as a clock. Using simple experiments we have demonstrated zero static power dissipation, thermally limited dynamic power dissipation, high clock stability, high operating margins and low BER. These features indicate that the technology is scalable to far more complex circuits at a significant level of integration. On the system level, Reciprocal Quantum Logic combines the high speed and low-power signal levels of Single-Flux- Quantum signals with the design methodology of CMOS, including low static power dissipation, low latency combinational logic, and efficient device count.Comment: 7 pages, 5 figure

    A low complexity hardware architecture for motion estimation

    Get PDF
    This paper tackles the problem of accelerating motion estimation for video processing. A novel architecture using binary data is proposed, which attempts to reduce power consumption. The solution exploits redundant operations in the sum of absolute differences (SAD) calculation, by a mechanism known as early termination. Further data redundancies are exploited by using a run length coding addressing scheme, where access to pixels which do not contribute to the final SAD value is minimised. By using these two techniques operations and memory accesses are reduced by 93.29% and 69.17% respectively relative to a systolic array implementation

    Formal Verification of an Iterative Low-Power x86 Floating-Point Multiplier with Redundant Feedback

    Full text link
    We present the formal verification of a low-power x86 floating-point multiplier. The multiplier operates iteratively and feeds back intermediate results in redundant representation. It supports x87 and SSE instructions in various precisions and can block the issuing of new instructions. The design has been optimized for low-power operation and has not been constrained by the formal verification effort. Additional improvements for the implementation were identified through formal verification. The formal verification of the design also incorporates the implementation of clock-gating and control logic. The core of the verification effort was based on ACL2 theorem proving. Additionally, model checking has been used to verify some properties of the floating-point scheduler that are relevant for the correct operation of the unit.Comment: In Proceedings ACL2 2011, arXiv:1110.447

    Low Complexity Belief Propagation Polar Code Decoders

    Full text link
    Since its invention, polar code has received a lot of attention because of its capacity-achieving performance and low encoding and decoding complexity. Successive cancellation decoding (SCD) and belief propagation decoding (BPD) are two of the most popular approaches for decoding polar codes. SCD is able to achieve good error-correcting performance and is less computationally expensive as compared to BPD. However SCDs suffer from long latency and low throughput due to the serial nature of the successive cancellation algorithm. BPD is parallel in nature and hence is more attractive for high throughput applications. However since it is iterative in nature, the required latency and energy dissipation increases linearly with the number of iterations. In this work, we borrow the idea of SCD and propose a novel scheme based on sub-factor-graph freezing to reduce the average number of computations as well as the average number of iterations required by BPD, which directly translates into lower latency and energy dissipation. Simulation results show that the proposed scheme has no performance degradation and achieves significant reduction in computation complexity over the existing methods.Comment: 6 page

    Enabling Fine-Grain Restricted Coset Coding Through Word-Level Compression for PCM

    Full text link
    Phase change memory (PCM) has recently emerged as a promising technology to meet the fast growing demand for large capacity memory in computer systems, replacing DRAM that is impeded by physical limitations. Multi-level cell (MLC) PCM offers high density with low per-byte fabrication cost. However, despite many advantages, such as scalability and low leakage, the energy for programming intermediate states is considerably larger than programing single-level cell PCM. In this paper, we study encoding techniques to reduce write energy for MLC PCM when the encoding granularity is lowered below the typical cache line size. We observe that encoding data blocks at small granularity to reduce write energy actually increases the write energy because of the auxiliary encoding bits. We mitigate this adverse effect by 1) designing suitable codeword mappings that use fewer auxiliary bits and 2) proposing a new Word-Level Compression (WLC) which compresses more than 91% of the memory lines and provides enough room to store the auxiliary data using a novel restricted coset encoding applied at small data block granularities. Experimental results show that the proposed encoding at 16-bit data granularity reduces the write energy by 39%, on average, versus the leading encoding approach for write energy reduction. Furthermore, it improves endurance by 20% and is more reliable than the leading approach. Hardware synthesis evaluation shows that the proposed encoding can be implemented on-chip with only a nominal area overhead.Comment: 12 page
    corecore