711 research outputs found

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. Tiivistelmä. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistä tärkeämmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnän kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa käytetään ylinäytteistystä ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. Tämän työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjärjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. Ylinäytteistyssuhde on 25 ja AD muuntimen näytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). Tämä työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmä esitetään yksityiskohtaisesti, ja vaatimusten täyttyminen varmistetaan “top-down” -suunnitteluperiaatteella. Liitteenä on kertoimien laskemiseen käytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkän silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentä -DA muunninta. Viivekompensointipolkua käyttämällä modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. Lisäksi FIR takaisinkytkentä -DA-muuntimen käyttö pienentää kellojitteriherkkyyttä, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyä ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty peräkkäin integraattoreita myötäkytkentärakenteella (CIFF) ja toisessa sekä myötä- että takaisinkytkentärakenteella (CIFF-B). Päähuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa käyttäen 0.8 voltin käyttöjännitettä. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. Lisäksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    Novel design strategies and architectures for continuous-time Sigma-Delta modulators

    Get PDF

    High Performance Integrated Circuit Blocks for High-IF Wideband Receivers

    Get PDF
    Due to the demand for high‐performance radio frequency (RF) integrated circuit design in the past years, a system‐on‐chip (SoC) that enables integration of analog and digital parts on the same die has become the trend of the microelectronics industry. As a result, a major requirement of the next generation of wireless devices is to support multiple standards in the same chip‐set. This would enable a single device to support multiple peripheral applications and services. Based on the aforementioned, the traditional superheterodyne front‐end architecture is not suitable for such applications as it would require a complete receiver for each standard to be supported. A more attractive alternative is the highintermediate frequency (IF) radio architecture. In this case the signal is digitalized at an intermediate frequency such as 200MHz. As a consequence, the baseband operations, such as down‐conversion and channel filtering, become more power and area efficient in the digital domain. Such architecture releases the specifications for most of the front‐end building blocks, but the linearity and dynamic range of the ADC become the bottlenecks in this system. The requirements of large bandwidth, high frequency and enough resolution make such ADC very difficult to realize. Many ADC architectures were analyzed and Continuous‐Time Bandpass Sigma‐Delta (CT‐BP‐ΣΔ) architecture was found to be the most suitable solution in the high‐IF receiver architecture since they combine oversampling and noise shaping to get fairly high resolution in a limited bandwidth. A major issue in continuous‐time networks is the lack of accuracy due to powervoltage‐ temperature (PVT) tolerances that lead to over 20% pole variations compared to their discrete‐time counterparts. An optimally tuned BP ΣΔ ADC requires correcting for center frequency deviations, excess loop delay, and DAC coefficients. Due to these undesirable effects, a calibration algorithm is necessary to compensate for these variations in order to achieve high SNR requirements as technology shrinks. In this work, a novel linearization technique for a Wideband Low‐Noise Amplifier (LNA) targeted for a frequency range of 3‐7GHz is presented. Post‐layout simulations show NF of 6.3dB, peak S21 of 6.1dB, and peak IIP3 of 21.3dBm, respectively. The power consumption of the LNA is 5.8mA from 2V. Secondly, the design of a CMOS 6th order CT BP‐ΣΔ modulator running at 800 MHz for High‐IF conversion of 10MHz bandwidth signals at 200 MHz is presented. A novel transconductance amplifier has been developed to achieve high linearity and high dynamic range at high frequencies. A 2‐bit quantizer with offset cancellation is alsopresented. The sixth‐order modulator is implemented using 0.18 um TSMC standard analog CMOS technology. Post‐layout simulations in cadence demonstrate that the modulator achieves a SNDR of 78 dB (~13 bit) performance over a 14MHz bandwidth. The modulator’s static power consumption is 107mW from a supply power of ± 0.9V. Finally, a calibration technique for the optimization of the Noise Transfer Function CT BP ΣΔ modulators is presented. The proposed technique employs two test tones applied at the input of the quantizer to evaluate the noise transfer function of the ADC, using the capabilities of the Digital Signal Processing (DSP) platform usually available in mixed‐mode systems. Once the ADC output bit stream is captured, necessary information to generate the control signals to tune the ADC parameters for best Signal‐to‐Quantization Noise Ratio (SQNR) performance is extracted via Least‐ Mean Squared (LMS) software‐based algorithm. Since the two tones are located outside the band of interest, the proposed global calibration approach can be used online with no significant effect on the in‐band content

    A re-configurable pipeline ADC architecture with built-in self-test techniques

    Get PDF
    High-performance analog and mixed-signal integrated circuits are integral parts of today\u27s and future networking and communication systems. The main challenge facing the semiconductor industry is the ability to economically produce these analog ICs. This translates, in part, into the need to efficiently evaluate the performance of such ICs during manufacturing (production testing) and to come up with dynamic architectures that enable the performance of these ICs to be maximized during manufacturing and later when they\u27re operating in the field. On the performance evaluation side, this dissertation deals with the concept of Built-In-Self-Test (BIST) to allow the efficient and economical evaluation of certain classes of high-performance analog circuits. On the dynamic architecture side, this dissertation deals with pipeline ADCs and the use of BIST to dynamically, during production testing or in the field, re-configure them to produce better performing ICs.;In the BIST system proposed, the analog test signal is generated on-chip by sigma-delta modulation techniques. The performance of the ADC is measured on-chip by a digital narrow-band filter. When this system is used on the wafer level, significant testing time and thus testing cost can be saved.;A re-configurable pipeline ADC architecture to improve the dynamic performance is proposed. Based on dynamic performance measurements, the best performance configuration is chosen from a collection of possible pipeline configurations. This basic algorithm can be applied to many pipeline analog systems. The proposed grouping algorithm cuts down the number of evaluation permutation from thousands to 18 for a 9-bit ADC thus allowing the method to be used in real applications.;To validate the developments of this dissertation, a 40MS/s 9-bit re-configurable pipeline ADC was designed and implemented in TSMC\u27s 0.25mum single-poly CMOS digital process. This includes a fully differential folded-cascode gain-boosting operational amplifier with high gain and high unity-gain bandwidth. The experimental results strongly support the effectiveness of reconfiguration algorithm, which provides an average of 0.5bit ENOB improvement among the set of configurations. For many applications, this is a very significant performance improvement.;The BIST and re-configurability techniques proposed are not limited to pipeline ADCs only. The BIST methodology is applicable to many analog systems and the re-configurability is applicable to any analog pipeline system

    A low-power reconfigurable analog-to-digital converter

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 197-200).This thesis presents the concept, theory and design of a low power CMOS analog-to-digital converter that can digitize signals over a wide range of bandwidth and resolution with adaptive power consumption. The converter achieves the wide operating range by reconfiguring (1) its architecture between pipeline and delta-sigma modes (2) by varying its circuit parameters such as size of capacitors, length of pipeline, oversampling ratio, among others and (3) by varying the bias currents of the opamps in proportion with converter sampling frequency, accomplished through the use of a phase-locked loop. Target input signals for this ADC include high frequency and moderate resolution signals such as video and low I.F. in radio Receivers, low frequency and high resolution signals from seismic sensors and MEMs devices, and others that fall in between these extremes such as audio, voice and general purpose data-acquisition. This converter also incorporates several power reducing features such as thermal noise limited design, global converter chopping in the pipeline mode, opamp scaling, opamp sharing between consecutive stages in the pipeline mode, an opamp chopping technique in the delta-sigma mode, and other design techniques. The opamp chopping technique achieves faster closed-loop settling time and lower thermal noise than conventional design.(cont.) At a converter power supply at 3.3V, the converter achieves a bandwidth range of 0-10MHz over a resolution range of 6 -16 bits, and parameter reconfiguration time of 12 clock cycles. Its PLL lock range is measured at 20KHz to 40MHz. In the delta-sigma mode, it achieves a maximum SNR of 94dB and second and third harmonic distortions of 102dB and 95dB, respectively at 10MHz clock frequency, 9.4KHz bandwidth, and 17.6mW power. In the pipeline mode, it achieves a maximum DNL and INL of +/-0.55LSBs and +/-0.82LSBs, respectively, at 11-bits of resolution, at a clock frequency of 2.6MHz and 1MHz tone with 24.6mW of power.by Kush Gulati.Ph.D

    Baseband analog circuits in deep-submicron cmos technologies targeted for mobile multimedia

    Get PDF
    Three main analog circuit building blocks that are important for a mixed-signal system are investigated in this work. New building blocks with emphasis on power efficiency and compatibility with deep-submicron technology are proposed and experimental results from prototype integrated circuits are presented. Firstly, a 1.1GHz, 5th order, active-LC, Butterworth wideband equalizer that controls inter-symbol interference and provides anti-alias filtering for the subsequent analog to digital converter is presented. The equalizer design is based on a new series LC resonator biquad whose power efficiency is analytically shown to be better than a conventional Gm-C biquad. A prototype equalizer is fabricated in a standard 0.18μm CMOS technology. It is experimentally verified to achieve an equalization gain programmable over a 0-23dB range, 47dB SNR and -48dB IM3 while consuming 72mW of power. This corresponds to more than 7 times improvement in power efficiency over conventional Gm-C equalizers. Secondly, a load capacitance aware compensation for 3-stage amplifiers is presented. A class-AB 16W headphone driver designed using this scheme in 130nm technology is experimentally shown to handle 1pF to 22nF capacitive load while consuming as low as 1.2mW of quiescent power. It can deliver a maximum RMS power of 20mW to the load with -84.8dB THD and 92dB peak SNR, and it occupies a small area of 0.1mm2. The power consumption is reduced by about 10 times compared to drivers that can support such a wide range of capacitive loads. Thirdly, a novel approach to design of ADC in deep-submicron technology is described. The presented technique enables the usage of time-to-digital converter (TDC) in a delta-sigma modulator in a manner that takes advantage of its high timing precision while noise-shaping the error due to its limited time resolution. A prototype ADC designed based on this deep-submicron technology friendly architecture was fabricated in a 65nm digital CMOS technology. The ADC is experimentally shown to achieve 68dB dynamic range in 20MHz signal bandwidth while consuming 10.5mW of power. It is projected to reduce power and improve speed with technology scaling

    Applied high resolution digital control for universal precision systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 223-225).This thesis describes the design and characterization of a high-resolution analog interface for dSPACE digital control systems and a high-resolution, high-speed data acquisition and control system. These designs are intended to enable higher precision digital control than currently available. The dSPACE system was previously designed within the PMC Lab and includes higher resolution A/D and D/A interfaces than natively available. Characterization on the custom A/D channel demonstrates 20.1 effective bits, or a 121 dB dynamic range, and the custom D/A channel demonstrates 15.1 effective bits, or a 91 dB dynamic range. This compares to a 15.7 effective bits on the A/D dSPACE channel and 12.3 effective bits on the D/A dSPACE channel. The increased resolution is attained by higher performance hardware and oversampling and averaging the A/D channel. The sampling rate is limited to 8 kHz. The high-resolution, high-speed data acquisition and control system can sample two A/D channels at 2.5 MHz and display/save an acquired one second burst. The A/D channel is characterized at 109 dB dynamic range with a grounded input and 96 dB dynamic range, or 0.74 nm RMS over a 50 [mu]m range, with a fixtured capacitive probe. Acquisition at 2.5 MHz and closed-loop control at 625 kHz sampling rate is implemented on a National Instruments FPGA. The A/D circuit was designed and built on a custom printed circuit board around the commercially available AD7760 sigma-delta converter from Analog Devices and includes fully differential ±10 V inputs, a dedicated microcontroller to provide an initialization sequence, and digital galvanic isolation. LabVIEW FPGA code demonstrates arbitrary transfer function control implementation.(cont.) The digital platform is applied to a 1-DOF positioner to demonstrate 0.10 nm RMS control over a 10 [mu]m mechanical range when filtered to the 1.5 kHz closed-loop bandwidth, which is limited by the A/D converter architecture propagation delay.by Aaron John Gawlik.S.M

    Design techniques for low noise and high speed A/D converters

    Get PDF
    Analog-to-digital (A/D) conversion is a process that bridges the real analog world to digital signal processing. It takes a continuous-time, continuous amplitude signal as its input and outputs a discrete-time, discrete-amplitude signal. The resolution and sampling rate of an A/D converter vary depending on the application. Recently, there has been a growing demand for broadband (>1 MHz), high-resolution (>14bits) A/D converters. Applications that demand such converters include asymmetric digital subscriber line (ADSL) modems, cellular systems, high accuracy instrumentation, and medical imaging systems. This thesis suggests some design techniques for such high resolution and high sampling rate A/D converters. As the A/D converter performance keeps on increasing it becomes increasingly difficult for the input driver to settle to required accuracy within the sampling time. This is because of the use of larger sampling capacitor (increased resolution) and a decrease in sampling time (higher speed). So there is an increasing trend to have a driver integrated onchip along with A/D converter. The first contribution of this thesis is to present a new precharge scheme which enables integrating the input buffer with A/D converter in standard CMOS process. The buffer also uses a novel multi-path common mode feedback scheme to stabilize the common mode loop at high speeds. Another major problem in achieving very high Signal to Noise and Distortion Ratio (SNDR) is the capacitor mismatch in Digital to Analog Converters (DAC) inherent in the A/D converters. The mismatch between the capacitor causes harmonic distortion, which may not be acceptable. The analysis of Dynamic Element Matching (DEM) technique as applicable to broadband data-converters is presented and a novel second order notch-DEM is introduced. In this thesis we present a method to calibrate the DAC. We also show that a combination of digital error correction and dynamic element matching is optimal in terms of test time or calibration time. Even if we are using dynamic element matching techniques, it is still critical to get the best matching of unit elements possible in a given technology. The matching obtained may be limited either by random variations in the unit capacitor or by gradient effects. In this thesis we present layout techniques for capacitor arrays, and the matching results obtained in measurement from a test-chip are presented. Thus we present various design techniques for high speed and low noise A/D converters in this thesis. The techniques described are quite general and can be applied to most of the types of A/D converters
    corecore