1,042 research outputs found

    A Quantum Computational Learning Algorithm

    Full text link
    An interesting classical result due to Jackson allows polynomial-time learning of the function class DNF using membership queries. Since in most practical learning situations access to a membership oracle is unrealistic, this paper explores the possibility that quantum computation might allow a learning algorithm for DNF that relies only on example queries. A natural extension of Fourier-based learning into the quantum domain is presented. The algorithm requires only an example oracle, and it runs in O(sqrt(2^n)) time, a result that appears to be classically impossible. The algorithm is unique among quantum algorithms in that it does not assume a priori knowledge of a function and does not operate on a superposition that includes all possible states.Comment: This is a reworked and improved version of a paper originally entitled "Quantum Harmonic Sieve: Learning DNF Using a Classical Example Oracle

    Classification of ordered texture images using regression modelling and granulometric features

    Get PDF
    Structural information available from the granulometry of an image has been used widely in image texture analysis and classification. In this paper we present a method for classifying texture images which follow an intrinsic ordering of textures, using polynomial regression to express granulometric moments as a function of class label. Separate models are built for each individual moment and combined for back-prediction of the class label of a new image. The methodology was developed on synthetic images of evolving textures and tested using real images of 8 different grades of cut-tear-curl black tea leaves. For comparison, grey level co-occurrence (GLCM) based features were also computed, and both feature types were used in a range of classifiers including the regression approach. Experimental results demonstrate the superiority of the granulometric moments over GLCM-based features for classifying these tea images

    Cooperative learning in multi-agent systems from intermittent measurements

    Full text link
    Motivated by the problem of tracking a direction in a decentralized way, we consider the general problem of cooperative learning in multi-agent systems with time-varying connectivity and intermittent measurements. We propose a distributed learning protocol capable of learning an unknown vector μ\mu from noisy measurements made independently by autonomous nodes. Our protocol is completely distributed and able to cope with the time-varying, unpredictable, and noisy nature of inter-agent communication, and intermittent noisy measurements of μ\mu. Our main result bounds the learning speed of our protocol in terms of the size and combinatorial features of the (time-varying) networks connecting the nodes

    Morphological granulometry for classification of evolving and ordered texture images.

    Get PDF
    In this work we investigate the use of morphological granulometric moments as texture descriptors to predict time or class of texture images which evolve over time or follow an intrinsic ordering of textures. A cubic polynomial regression was used to model each of several granulometric moments as a function of time or class. These models are then combined and used to predict time or class. The methodology was developed on synthetic images of evolving textures and then successfully applied to classify a sequence of corrosion images to a point on an evolution time scale. Classification performance of the new regression approach is compared to that of linear discriminant analysis, neural networks and support vector machines. We also apply our method to images of black tea leaves, which are ordered according to granule size, and very high classification accuracy was attained compared to existing published results for these images. It was also found that granulometric moments provide much improved classification compared to grey level co-occurrence features for shape-based texture images

    Active Learning for Deep Neural Networks on Edge Devices

    Full text link
    When dealing with deep neural network (DNN) applications on edge devices, continuously updating the model is important. Although updating a model with real incoming data is ideal, using all of them is not always feasible due to limits, such as labeling and communication costs. Thus, it is necessary to filter and select the data to use for training (i.e., active learning) on the device. In this paper, we formalize a practical active learning problem for DNNs on edge devices and propose a general task-agnostic framework to tackle this problem, which reduces it to a stream submodular maximization. This framework is light enough to be run with low computational resources, yet provides solutions whose quality is theoretically guaranteed thanks to the submodular property. Through this framework, we can configure data selection criteria flexibly, including using methods proposed in previous active learning studies. We evaluate our approach on both classification and object detection tasks in a practical setting to simulate a real-life scenario. The results of our study show that the proposed framework outperforms all other methods in both tasks, while running at a practical speed on real devices

    Discrete Denoising Diffusion Approach to Integer Factorization

    Full text link
    Integer factorization is a famous computational problem unknown whether being solvable in the polynomial time. With the rise of deep neural networks, it is interesting whether they can facilitate faster factorization. We present an approach to factorization utilizing deep neural networks and discrete denoising diffusion that works by iteratively correcting errors in a partially-correct solution. To this end, we develop a new seq2seq neural network architecture, employ relaxed categorical distribution and adapt the reverse diffusion process to cope better with inaccuracies in the denoising step. The approach is able to find factors for integers of up to 56 bits long. Our analysis indicates that investment in training leads to an exponential decrease of sampling steps required at inference to achieve a given success rate, thus counteracting an exponential run-time increase depending on the bit-length.Comment: International Conference on Artificial Neural Networks ICANN 202

    Essays on Modern Econometrics and Machine Learning

    Get PDF
    Diese Dissertation behandelt verschiedene Aspekte moderner Ökonometrie und Machine Learnings. Kapitel 2 stellt einen neuen Schätzer für die Regressionsparameter in einem Paneldatenmodell mit interaktiven festen Effekten vor. Eine Besonderheit unserer Methode ist die Modellierung der factor loadings durch nichtparametrische Funktionen. Wir zeigen die root-NT-Konvergenz sowie die asymptotische Normalverteilung unseres Schätzers. Kapitel 3 betrachtet die rekursive Schätzung von Quantilen mit Hilfe des stochastic gradient descent (SGD) Algorithmus mit Polyak-Ruppert Mittelwertbildung. Der Algorithmus ist rechnerisch und Speicher-effizient verglichen mit herkömmlichen Schätzmethoden. Unser Fokus ist die Untersuchung des nichtasymptotischen Verhaltens, indem wir eine exponentielle Wahrscheinlichkeitsungleichung zeigen. In Kapitel 4 stellen wir eine neue Methode zur Kalibrierung von conditional Value-at-Risk (CoVaR) basierend auf Quantilregression mittels Neural Networks vor. Wir modellieren systemische Spillovereffekte in einem Netzwerk von systemrelevanten Finanzinstituten. Eine Out-of-Sample Analyse zeigt eine klare Verbesserung im Vergleich zu einer linearen Grundspezifikation. Im Vergleich mit bestehenden Risikomaßen eröffnet unsere Methode eine neue Perspektive auf systemisches Risiko. In Kapitel 5 modellieren wir die gemeinsame Dynamik von Kryptowährungen in einem nicht-stationären Kontext. Um eine Analyse in einem dynamischen Rahmen zu ermöglichen, stellen wir eine neue vector error correction model (VECM) Spezifikation vor, die wir COINtensity VECM nennen.This thesis focuses on different aspects of the union of modern econometrics and machine learning. Chapter 2 considers a new estimator of the regression parameters in a panel data model with unobservable interactive fixed effects. A distinctive feature of the proposed approach is to model the factor loadings as a nonparametric function. We show that our estimator is root-NT-consistent and asymptotically normal, as well that it reaches the semiparametric efficiency bound under the assumption of i.i.d. errors. Chapter 3 is concerned with the recursive estimation of quantiles using the stochastic gradient descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm offers a computationally and memory efficient alternative to the usual empirical estimator. Our focus is on studying the nonasymptotic behavior by providing exponentially decreasing tail probability bounds under minimal assumptions. In Chapter 4 we propose a novel approach to calibrate the conditional value-at-risk (CoVaR) of financial institutions based on neural network quantile regression. We model systemic risk spillover effects in a network context across banks by considering the marginal effects of the quantile regression procedure. An out-of-sample analysis shows great performance compared to a linear baseline specification, signifying the importance that nonlinearity plays for modelling systemic risk. A comparison to existing network-based risk measures reveals that our approach offers a new perspective on systemic risk. In Chapter 5 we aim to model the joint dynamics of cryptocurrencies in a nonstationary setting. In particular, we analyze the role of cointegration relationships within a large system of cryptocurrencies in a vector error correction model (VECM) framework. To enable analysis in a dynamic setting, we propose the COINtensity VECM, a nonlinear VECM specification accounting for a varying system-wide cointegration exposure
    corecore