38 research outputs found

    Peak to average power ratio reduction in NC–OFDM systems

    Get PDF
    Non contiguous orthogonal frequency division multiplexing (NC-OFDM) is an efficient and adaptable multicarrier modulation scheme to be used in cognitive radio communications. However like OFDM, NC-OFDM also suffers from the main drawback of high peak to average power ratio (PAPR). In this paper PAPR has been reduced by employing three different trigonometric transforms. Discrete cosine transform (DCT), discrete sine transform (DST) and fractional fourier transform (FRFT) has been combined with conventional selected level mapping (SLM) technique to reduce the PAPR of both OFDM and NC-OFDM based systems. The method combines all the transforms with SLM in different ways. Transforms DCT, DST and FRFT have been applied before the SLM block or inside the SLM block before IFFT. Simulation results show the comparative analysis of all the transforms using SLM in case of both OFDM and NC-OFDM based systems

    PAPR Reduction and Sidelobe Suppression in Cognitive OFDM - A Survey

    Get PDF
    Cognitive radio (CR) is one of the key technology providing a new way to enhance the utilization of available spectrum effectively. The multicarrier modulation (MCM) technique which is widely used is Orthogonal Frequency Division Multiplexing (OFDM) system, is an excellent choice for high data rate application. The main two limitations of this technology is the high peak-to-average power ratio (PAPR) of transmission signal and large spectrum sidelobe. This article describes some of the important PAPR reduction techniques and sidelobe suppression techniques

    PAPR Reduction and Sidelobe Suppression in Cognitive OFDM - A Survey

    Get PDF
    Cognitive radio (CR) is one of the key technology providing a new way to enhance the utilization of available spectrum effectively. The multicarrier modulation (MCM) technique which is widely used is Orthogonal Frequency Division Multiplexing (OFDM) system, is an excellent choice for high data rate application. The main two limitations of this technology is the high peak-to-average power ratio (PAPR) of transmission signal and large spectrum sidelobe. This article describes some of the important PAPR reduction techniques and sidelobe suppression techniques

    Digital Pre-distortion for Interference Reduction in Dynamic Spectrum Access Networks

    Get PDF
    Given the ever increasing reliance of today’s society on ubiquitous wireless access, the paradigm of dynamic spectrum access (DSA) as been proposed and implemented for utilizing the limited wireless spectrum more efficiently. Orthogonal frequency division multiplexing (OFDM) is growing in popularity for adoption into wireless services employing DSA frame- work, due to its high bandwidth efficiency and resiliency to multipath fading. While these advantages have been proven for many wireless applications, including LTE-Advanced and numerous IEEE wireless standards, one potential drawback of OFDM or its non-contiguous variant, NC-OFDM, is that it exhibits high peak-to-average power ratios (PAPR), which can induce in-band and out-of-band (OOB) distortions when the peaks of the waveform enter the compression region of the transmitter power amplifier (PA). Such OOB emissions can interfere with existing neighboring transmissions, and thereby severely deteriorate the reliability of the DSA network. A performance-enhancing digital pre-distortion (DPD) technique compensating for PA and in-phase/quadrature (I/Q) modulator distortions is proposed in this dissertation. Al- though substantial research efforts into designing DPD schemes have already been presented in the open literature, there still exists numerous opportunities to further improve upon the performance of OOB suppression for NC-OFDM transmission in the presence of RF front-end impairments. A set of orthogonal polynomial basis functions is proposed in this dissertation together with a simplified joint DPD structure. A performance analysis is presented to show that the OOB emissions is reduced to approximately 50 dBc with proposed algorithms employed during NC-OFDM transmission. Furthermore, a novel and intuitive DPD solution that can minimize the power regrowth at any pre-specified frequency in the spurious domain is proposed in this dissertation. Conventional DPD methods have been proven to be able to effectively reduce the OOB emissions that fall on top of adjacent channels. However more spectral emissions in more distant frequency ranges are generated by employing such DPD solutions, which are potentially in violation of the spurious emission limit. At the same time, the emissions in adjacent channel must be kept under the OOB limit. To the best of the author’s knowledge, there has not been extensive research conducted on this topic. Mathematical derivation procedures of the proposed algorithm are provided for both memoryless nonlinear model and memory-based nonlinear model. Simulation results show that the proposed method is able to provide a good balance of OOB emissions and emissions in the far out spurious domain, by reducing the spurious emissions by 4-5 dB while maintaining the adjacent channel leakage ratio (ACLR) improvement by at least 10 dB, comparing to the PA output spectrum without any DPD

    Throughput analysis of full-duplex communication cognitive radio network

    Get PDF
    In this paper we deal with the throughput of full-duplex cognitive communication radio which exploits unused band of primary user (PU) network. Classical cognitive radio uses half-duplex communication spectrum sensing to perform spectrum sensing and data transmission at different time intervals. It’s well-established fact that in half-duplex communication cognitive radio spectrum sensing time increases at low SNR which gives rise to lesser data transmission time for secondary user (SU) and hence results in less throughput for SU. It’s useful idea to do spectrum sensing and data transmission at the same time with two different antennas co-located on the SU transceiver. This shall not only guarantee high probability of detection of PU but also increased data transmission which means more throughput for SU. However, simultaneous sensing and data transmission has inherent problem of self-interference. One of the possible solution is to use polarisation discrimination in which sensing and data transmission antennas must use different polarisation. This is feasible if there is prior information about the polarisation of the signals emitted by the PUs. It shall be of special interest to assess throughput using analytical expressions for probability of detection PD, probability of false alarm PFA at various values of SNR for time-slotted cognitive radio which uses half-duplex spectrum sensing and non-time-slotted cognitive radio which uses full-duplex communication cognitive radio

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Sequence Design for Cognitive CDMA Communications under Arbitrary Spectrum Hole Constraint

    Full text link
    To support interference-free quasi-synchronous code-division multiple-access (QS-CDMA) communication with low spectral density profile in a cognitive radio (CR) network, it is desirable to design a set of CDMA spreading sequences with zero-correlation zone (ZCZ) property. However, traditional ZCZ sequences (which assume the availability of the entire spectral band) cannot be used because their orthogonality will be destroyed by the spectrum hole constraint in a CR channel. To date, analytical construction of ZCZ CR sequences remains open. Taking advantage of the Kronecker sequence property, a novel family of sequences (called "quasi-ZCZ" CR sequences) which displays zero cross-correlation and near-zero auto-correlation zone property under arbitrary spectrum hole constraint is presented in this paper. Furthermore, a novel algorithm is proposed to jointly optimize the peak-to-average power ratio (PAPR) and the periodic auto-correlations of the proposed quasi-ZCZ CR sequences. Simulations show that they give rise to single-user bit-error-rate performance in CR-CDMA systems which outperform traditional non-contiguous multicarrier CDMA and transform domain communication systems; they also lead to CR-CDMA systems which are more resilient than non-contiguous OFDM systems to spectrum sensing mismatch, due to the wideband spreading.Comment: 13 pages,10 figures,Accepted by IEEE Journal on Selected Areas in Communications (JSAC)--Special Issue:Cognitive Radio Nov, 201
    corecore