8 research outputs found

    Cross-core Microarchitectural Attacks and Countermeasures

    Get PDF
    In the last decade, multi-threaded systems and resource sharing have brought a number of technologies that facilitate our daily tasks in a way we never imagined. Among others, cloud computing has emerged to offer us powerful computational resources without having to physically acquire and install them, while smartphones have almost acquired the same importance desktop computers had a decade ago. This has only been possible thanks to the ever evolving performance optimization improvements made to modern microarchitectures that efficiently manage concurrent usage of hardware resources. One of the aforementioned optimizations is the usage of shared Last Level Caches (LLCs) to balance different CPU core loads and to maintain coherency between shared memory blocks utilized by different cores. The latter for instance has enabled concurrent execution of several processes in low RAM devices such as smartphones. Although efficient hardware resource sharing has become the de-facto model for several modern technologies, it also poses a major concern with respect to security. Some of the concurrently executed co-resident processes might in fact be malicious and try to take advantage of hardware proximity. New technologies usually claim to be secure by implementing sandboxing techniques and executing processes in isolated software environments, called Virtual Machines (VMs). However, the design of these isolated environments aims at preventing pure software- based attacks and usually does not consider hardware leakages. In fact, the malicious utilization of hardware resources as covert channels might have severe consequences to the privacy of the customers. Our work demonstrates that malicious customers of such technologies can utilize the LLC as the covert channel to obtain sensitive information from a co-resident victim. We show that the LLC is an attractive resource to be targeted by attackers, as it offers high resolution and, unlike previous microarchitectural attacks, does not require core-colocation. Particularly concerning are the cases in which cryptography is compromised, as it is the main component of every security solution. In this sense, the presented work does not only introduce three attack variants that can be applicable in different scenarios, but also demonstrates the ability to recover cryptographic keys (e.g. AES and RSA) and TLS session messages across VMs, bypassing sandboxing techniques. Finally, two countermeasures to prevent microarchitectural attacks in general and LLC attacks in particular from retrieving fine- grain information are presented. Unlike previously proposed countermeasures, ours do not add permanent overheads in the system but can be utilized as preemptive defenses. The first identifies leakages in cryptographic software that can potentially lead to key extraction, and thus, can be utilized by cryptographic code designers to ensure the sanity of their libraries before deployment. The second detects microarchitectural attacks embedded into innocent-looking binaries, preventing them from being posted in official application repositories that usually have the full trust of the customer

    Low-power emerging memristive designs towards secure hardware systems for applications in internet of things

    Get PDF
    Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-memory computing (IMC), but there is a rising interest in using memristive technologies for security applications in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-power design techniques based on emerging memristive technology for hardware security primitives/systems are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing, their application-level impacts on the novel implementations of secret key generation, crypto functions and machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security. This review article aims to help researchers to explore security solutions, to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs

    Enabling Reliable, Efficient, and Secure Computing for Energy Harvesting Powered IoT Devices

    Get PDF
    Energy harvesting is one of the most promising techniques to power devices for future generation IoT. While energy harvesting does not have longevity, safety, and recharging concerns like traditional batteries, its instability brings a new challenge to the embedded systems: the energy harvested from environment is usually weak and intermittent. With traditional CMOS based technology, whenever the power is off, the computation has to start from the very beginning. Compared with existing CMOS based memory devices, emerging non-volatile memory devices such as PCM and STT-RAM, have the benefits of sustaining the data even when there is no power. By checkpointing the processor's volatile state to non-volatile memory, a program can resume its execution immediately after power comes back on again instead of restarting from the very beginning with checkpointing techniques. However, checkpointing is not sufficient for energy harvesting systems. First, the program execution resumed from the last checkpoint might not execute correctly and causes inconsistency problem to the system. This problem is due to the inconsistency between volatile system state and non-volatile system state during checkpointing. Second, the process of checkpointing consumes a considerable amount of energy and time due to the slow and energy-consuming write operation of non-volatile memory. Finally, connecting to the internet poses many security issues to energy harvesting IoT devices. Traditional data encryption methods are both energy and time consuming which do not fit the resource constrained IoT devices. Therefore, a light-weight encryption method is in urgent need for securing IoT devices. Targeting those three challenges, this dissertation proposes three techniques to enable reliable, efficient, and secure computing in energy harvesting IoT devices. First, a consistency-aware checkpointing technique is proposed to avoid inconsistency errors generated from the inconsistency between volatile state and non-volatile state. Second, checkpoint aware hybrid cache architecture is proposed to guarantee reliable checkpointing while maintaining a low checkpointing overhead from cache. Finally, to ensure the security of energy harvesting IoT devices, an energy-efficient in-memory encryption implementation for protecting the IoT device is proposed which can quickly encrypts the data in non-volatile memory and protect the embedded system physical and on-line attacks

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Provably Trustworthy and Secure Hardware Design with Low Overhead

    Get PDF
    Due to the globalization of IC design in the semiconductor industry and outsourcing of chip manufacturing, 3PIPs become vulnerable to IP piracy, reverse engineering, counterfeit IC, and hardware Trojans. To thwart such attacks, ICs can be protected using logic encryption techniques. However, strong resilient techniques incur significant overheads. SCAs further complicate matters by introducing potential attacks post-fabrication. One of the most severe SCAs is PA attacks, in which an attacker can observe the power variations of the device and analyze them to extract the secret key. PA attacks can be mitigated via adding large extra hardware; however, the overheads of such solutions can render them impractical, especially when there are power and area constraints. In our first approach, we present two techniques to prevent normal attacks. The first one is based on inserting MUX equal to half/full of the output bit number. In the second technique, we first design PLGs using SiNW FETs and then replace some logic gates in the original design with their SiNW FETs-based PLGs counterparts. In our second approach, we use SiNW FETs to produce obfuscated ICs that are resistant to advanced reverse engineering attacks. Our method is based on designing a small block, whose output is untraceable, namely URSAT. Since URSAT may not offer very strong resilience against the combined AppSAT-removal attack, S-URSAT is achieved using only CMOS-logic gates, and this increases the security level of the design to robustly thwart all existing attacks. In our third topic, we present the usage of ASLD to produce secure and resilient circuits that withstand IC attacks (during the fabrication) and PA attacks (after fabrication). First, we show that ASLD has unique features that can be used to prevent PA and IC attacks. In our three topics, we evaluate each design based on performance overheads and security guarantees
    corecore