123 research outputs found

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Deep Learning in Mobile and Wireless Networking: A Survey

    Get PDF
    The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, agile management of network resource to maximize user experience, and extraction of fine-grained real-time analytics. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques to help managing the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research

    Machine learning techniques for identification using mobile and social media data

    Get PDF
    Networked access and mobile devices provide near constant data generation and collection. Users, environments, applications, each generate different types of data; from the voluntarily provided data posted in social networks to data collected by sensors on mobile devices, it is becoming trivial to access big data caches. Processing sufficiently large amounts of data results in inferences that can be characterized as privacy invasive. In order to address privacy risks we must understand the limits of the data exploring relationships between variables and how the user is reflected in them. In this dissertation we look at data collected from social networks and sensors to identify some aspect of the user or their surroundings. In particular, we find that from social media metadata we identify individual user accounts and from the magnetic field readings we identify both the (unique) cellphone device owned by the user and their course-grained location. In each project we collect real-world datasets and apply supervised learning techniques, particularly multi-class classification algorithms to test our hypotheses. We use both leave-one-out cross validation as well as k-fold cross validation to reduce any bias in the results. Throughout the dissertation we find that unprotected data reveals sensitive information about users. Each chapter also contains a discussion about possible obfuscation techniques or countermeasures and their effectiveness with regards to the conclusions we present. Overall our results show that deriving information about users is attainable and, with each of these results, users would have limited if any indication that any type of analysis was taking place

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    Advances in Computer Recognition, Image Processing and Communications, Selected Papers from CORES 2021 and IP&C 2021

    Get PDF
    As almost all human activities have been moved online due to the pandemic, novel robust and efficient approaches and further research have been in higher demand in the field of computer science and telecommunication. Therefore, this (reprint) book contains 13 high-quality papers presenting advancements in theoretical and practical aspects of computer recognition, pattern recognition, image processing and machine learning (shallow and deep), including, in particular, novel implementations of these techniques in the areas of modern telecommunications and cybersecurity

    Machine Learning Meets Communication Networks: Current Trends and Future Challenges

    Get PDF
    The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction

    Deep neural mobile networking

    Get PDF
    The next generation of mobile networks is set to become increasingly complex, as these struggle to accommodate tremendous data traffic demands generated by ever-more connected devices that have diverse performance requirements in terms of throughput, latency, and reliability. This makes monitoring and managing the multitude of network elements intractable with existing tools and impractical for traditional machine learning algorithms that rely on hand-crafted feature engineering. In this context, embedding machine intelligence into mobile networks becomes necessary, as this enables systematic mining of valuable information from mobile big data and automatically uncovering correlations that would otherwise have been too difficult to extract by human experts. In particular, deep learning based solutions can automatically extract features from raw data, without human expertise. The performance of artificial intelligence (AI) has achieved in other domains draws unprecedented interest from both academia and industry in employing deep learning approaches to address technical challenges in mobile networks. This thesis attacks important problems in the mobile networking area from various perspectives by harnessing recent advances in deep neural networks. As a preamble, we bridge the gap between deep learning and mobile networking by presenting a survey on the crossovers between the two areas. Secondly, we design dedicated deep learning architectures to forecast mobile traffic consumption at city scale. In particular, we tailor our deep neural network models to different mobile traffic data structures (i.e. data originating from urban grids and geospatial point-cloud antenna deployments) to deliver precise prediction. Next, we propose a mobile traffic super resolution (MTSR) technique to achieve coarse-to-fine grain transformations on mobile traffic measurements using generative adversarial network architectures. This can provide insightful knowledge to mobile operators about mobile traffic distribution, while effectively reducing the data post-processing overhead. Subsequently, the mobile traffic decomposition (MTD) technique is proposed to break the aggregated mobile traffic measurements into service-level time series, by using a deep learning based framework. With MTD, mobile operators can perform more efficient resource allocation for network slicing (i.e, the logical partitioning of physical infrastructure) and alleviate the privacy concerns that come with the extensive use of deep packet inspection. Finally, we study the robustness of network specific deep anomaly detectors with a realistic black-box threat model and propose reliable solutions for defending against attacks that seek to subvert existing network deep learning based intrusion detection systems (NIDS). Lastly, based on the results obtained, we identify important research directions that are worth pursuing in the future, including (i) serving deep learning with massive high-quality data (ii) deep learning for spatio-temporal mobile data mining (iii) deep learning for geometric mobile data mining (iv) deep unsupervised learning in mobile networks, and (v) deep reinforcement learning for mobile network control. Overall, this thesis demonstrates that deep learning can underpin powerful tools that address data-driven problems in the mobile networking domain. With such intelligence, future mobile networks can be monitored and managed more effectively and thus higher user quality of experience can be guaranteed

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues
    • …
    corecore