210 research outputs found

    Side Channel Power Analysis of an AES-256 Bootloader

    Get PDF
    Side Channel Attacks (SCA) using power measurements are a known method of breaking cryptographic algorithms such as AES. Published research into attacks on AES frequently target only AES-128, and often target only the core Electronic Code-Book (ECB) algorithm, without discussing surrounding issues such as triggering, along with breaking the initialization vector. This paper demonstrates a complete attack on a secure bootloader, where the firmware files have been encrypted with AES-256-CBC. A classic Correlation Power Analysis (CPA) attack is performed on AES-256 to recover the complete 32-byte key, and a CPA attack is also used to attempt recovery of the initialization vector (IV)

    Unlimited Results: Breaking Firmware Encryption of ESP32-V3

    Get PDF
    Because of the rapid growth of Internet of Things (IoT), embedded systems have become an interesting target for experienced attackers. ESP32~\cite{tech-ref-man} is a low-cost and low-power system on chip (SoC) series created by Espressif Systems. The firmware extraction of such embedded systems is a real threat to the manufacturer as it breaks its intellectual property and raises the risk of creating equivalent systems with less effort and resources. In 2019, LimitedResults~\cite{LimitedResultsPown} published power glitch attacks which resulted in dumping secure boot and flash encryption keys stored in the eFuses of ESP32. Therefore, Espressif patched this vulnerability and then advised its customers to use ESP32-V3, which is an updated SoC revision. This new version is hardened against fault injection attacks in hardware and software as announced by Espressif~\cite{ESPpatch}. In this paper, we present for the first time a deep hardware security evaluation for ESP32-V3. The main goal of this evaluation is to extract the firmware encryption key stored in the eFuses. This evaluation includes Fault Injection (FI) and Side-Channel (SC) attacks. First, we use Electromagnetic FI (EMFI) in order to show that ESP32-V3 doesn\u27t resist EMFI. However, by experimental results, we show that this version contains a revised bootloader compared to ESP32-V1, which hardens dumping the eFuse keys by FI. Second, we perform a full SC analysis on the AES accelerator of ESP32-V3. We show that an attacker with a physical access to the device can extract all the keys of the hardware AES-256 after collecting 60K power measurements during the execution of the AES block. Third, we present another SC analysis for the firmware decryption mechanism, by targeting the decryption operation during the power up. Using this knowledge, we demonstrate that the full 256-bit AES firmware encryption key, which is stored in the eFuses, can be recovered by SC analysis using 300K power measurements. Finally, we apply practically the firmware encryption attack on Jade hardware wallet \cite{jade}

    Bootbandit: A macOS Bootloader Attack

    Get PDF
    Full disk encryption (FDE) is used to protect a computer system against data theft by physical access. If a laptop or hard disk drive protected with FDE is stolen or lost, the data remains unreadable without the encryption key. To foil this defense, an intruder can gain physical access to a computer system in a so-called “evil maid” attack, install malware in the boot (pre-operating system) environment, and use the malware to intercept the victim’s password. Such an attack relies on the fact that the system is in a vulnerable state before booting into the operating system. In this paper, we discuss an evil maid type of attack, in which the victim’s password is stolen in the boot environment, passed to the macOS user environment, and then exfiltrated from the system to the attacker’s remote command and control server. On a macOS system, this attack has additional implications due to “password forwarding” technology, in which users’ account passwords also serve as FDE passwords

    Physical Fault Injection and Side-Channel Attacks on Mobile Devices:A Comprehensive Analysis

    Get PDF
    Today's mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as trusted execution environments, full-disk and file-based encryption. Both advancements have dramatically complicated the use of conventional physical attacks, requiring the development of specialised attacks. In this survey, we consolidate recent developments in physical fault injections and side-channel attacks on modern mobile devices. In total, we comprehensively survey over 50 fault injection and side-channel attack papers published between 2009-2021. We evaluate the prevailing methods, compare existing attacks using a common set of criteria, identify several challenges and shortcomings, and suggest future directions of research

    BootBandit: A macOS bootloader attack

    Get PDF
    Historically, the boot phase on personal computers left systems in a relatively vulnerable state. Because traditional antivirus software runs within the operating system, the boot environment is difficult to protect from malware. Examples of attacks against bootloaders include so‐called “evil maid” attacks, in which an intruder physically obtains a boot disk to install malicious software for obtaining the password used to encrypt a disk. The password then must be stored and retrieved again through physical access. In this paper, we discuss an attack that borrows concepts from the evil maid. We assume exploitation can be used to infect a bootloader on a system running macOS remotely to install code to steal the user\u27s password. We explore the ability to create a communication channel between the bootloader and the operating system to remotely steal the password for a disk protected by FileVault 2. On a macOS system, this attack has additional implications due to “password forwarding” technology, in which a user\u27s account password also serves as the FileVault password, enabling an additional attack surface through privilege escalation

    Security enhancements for FPGA-based MPSoCs: a boot-to-runtime protection flow for an embedded Linux-based system

    No full text
    International audienceNowadays, embedded systems become more and more complex: the hardware/software codesign approach is a method to create such systems in a single chip which can be based on reconfigurable technologies such as FPGAs (Field-Programmable Gate Arrays). In such systems, data exchanges are a key point as they convey critical and confidential information and data are transmitted between several hardware modules and software layers. In case of an FPGA development life cycle, OS (Operating System) / data updates as runtime communications can be done through an insecure link: attackers can use this medium to make the system misbehave (malicious injection) or retrieve bitstream-related information (eavesdropping). Recent works propose solutions to securely boot a bitstream and the associated OS while runtime transactions are not protected. This work proposes a full boot-to-runtime protection flow of an embedded Linux kernel during boot and confidentiality/integrity protection of the external memory containing the kernel and the main application code/data. This work shows that such a solution with hardware components induces an area occupancy of 10% of a xc6vlx240t Virtex-6 FPGA while having an improved throughput for Linux booting and lowlatency security for runtime protection

    Securing the iphion IPTV network

    Get PDF
    corecore