306 research outputs found

    Dsfer-Net: A Deep Supervision and Feature Retrieval Network for Bitemporal Change Detection Using Modern Hopfield Networks

    Full text link
    Change detection, as an important application for high-resolution remote sensing images, aims to monitor and analyze changes in the land surface over time. With the rapid growth in the quantity of high-resolution remote sensing data and the complexity of texture features, a number of quantitative deep learning-based methods have been proposed. Although these methods outperform traditional change detection methods by extracting deep features and combining spatial-temporal information, reasonable explanations about how deep features work on improving the detection performance are still lacking. In our investigations, we find that modern Hopfield network layers achieve considerable performance in semantic understandings. In this paper, we propose a Deep Supervision and FEature Retrieval network (Dsfer-Net) for bitemporal change detection. Specifically, the highly representative deep features of bitemporal images are jointly extracted through a fully convolutional Siamese network. Based on the sequential geo-information of the bitemporal images, we then design a feature retrieval module to retrieve the difference feature and leverage discriminative information in a deeply supervised manner. We also note that the deeply supervised feature retrieval module gives explainable proofs about the semantic understandings of the proposed network in its deep layers. Finally, this end-to-end network achieves a novel framework by aggregating the retrieved features and feature pairs from different layers. Experiments conducted on three public datasets (LEVIR-CD, WHU-CD, and CDD) confirm the superiority of the proposed Dsfer-Net over other state-of-the-art methods. Code will be available online (https://github.com/ShizhenChang/Dsfer-Net)

    Impact of Feature Representation on Remote Sensing Image Retrieval

    Get PDF
    Remote sensing images are acquired using special platforms, sensors and are classified as aerial, multispectral and hyperspectral images. Multispectral and hyperspectral images are represented using large spectral vectors as compared to normal Red, Green, Blue (RGB) images. Hence, remote sensing image retrieval process from large archives is a challenging task.  Remote sensing image retrieval mainly consist of feature representation as first step and finding out similar images to a query image as second step. Feature representation plays important part in the performance of remote sensing image retrieval process. Research work focuses on impact of feature representation of remote sensing images on the performance of remote sensing image retrieval. This study shows that more discriminative features of remote sensing images are needed to improve performance of remote sensing image retrieval process

    Re-identification of objects from aerial photos with hybrid siamese neural networks

    Get PDF
    In this paper, we consider the task of re-identifying the same object in different photos taken from separate positions and angles during aerial reconnaissance, which is a crucial task for the maintenance and surveillance of critical large-scale infrastructure. To effectively hybridize deep neural networks with available domain expertise for a given scenario, we propose a customized pipeline, wherein a domain-dependent object detector is trained to extract the assets (i.e., sub-components) present on the objects, and a siamese neural network learns to re-identify the objects, exploiting both visual features (i.e., the image crops corresponding to the assets) and the graphs describing the relations among their constituting assets. We describe a real-world application concerning the re-identification of electric poles in the Italian energy grid, showing our pipeline to significantly outperform siamese networks trained from visual information alone. We also provide a series of ablation studies of our framework to underline the effect of including topological asset information in the pipeline, learnable positional embeddings in the graphs, and the effect of different types of graph neural networks on the final accuracy

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Invariant descriptor learning using a Siamese convolutional neural network

    Get PDF
    In this paper we describe learning of a descriptor based on the Siamese Convolutional Neural Network (CNN) architecture and evaluate our results on a standard patch comparison dataset. The descriptor learning architecture is composed of an input module, a Siamese CNN descriptor module and a cost computation module that is based on the L2 Norm. The cost function we use pulls the descriptors of matching patches close to each other in feature space while pushing the descriptors for non-matching pairs away from each other. Compared to related work, we optimize the training parameters by combining a moving average strategy for gradients and Nesterov's Accelerated Gradient. Experiments show that our learned descriptor reaches a good performance and achieves state-of-art results in terms of the false positive rate at a 95% recall rate on standard benchmark datasets
    • …
    corecore