358 research outputs found

    Active recognition and pose estimation of rigid and deformable objects in 3D space

    Get PDF
    Object recognition and pose estimation is a fundamental problem in computer vision and of utmost importance in robotic applications. Object recognition refers to the problem of recognizing certain object instances, or categorizing objects into specific classes. Pose estimation deals with estimating the exact position of the object in 3D space, usually expressed in Euler angles. There are generally two types of objects that require special care when designing solutions to the aforementioned problems: rigid and deformable. Dealing with deformable objects has been a much harder problem, and usually solutions that apply to rigid objects, fail when used for deformable objects due to the inherent assumptions made during the design. In this thesis we deal with object categorization, instance recognition and pose estimation of both rigid and deformable objects. In particular, we are interested in a special type of deformable objects, clothes. We tackle the problem of autonomously recognizing and unfolding articles of clothing using a dual manipulator. This problem consists of grasping an article from a random point, recognizing it and then bringing it into an unfolded state by a dual arm robot. We propose a data-driven method for clothes recognition from depth images using Random Decision Forests. We also propose a method for unfolding an article of clothing after estimating and grasping two key-points, using Hough Forests. Both methods are implemented into a POMDP framework allowing the robot to interact optimally with the garments, taking into account uncertainty in the recognition and point estimation process. This active recognition and unfolding makes our system very robust to noisy observations. Our methods were tested on regular-sized clothes using a dual-arm manipulator. Our systems perform better in both accuracy and speed compared to state-of-the-art approaches. In order to take advantage of the robotic manipulator and increase the accuracy of our system, we developed a novel approach to address generic active vision problems, called Active Random Forests. While state of the art focuses on best viewing parameters selection based on single view classifiers, we propose a multi-view classifier where the decision mechanism of optimally changing viewing parameters is inherent to the classification process. This has many advantages: a) the classifier exploits the entire set of captured images and does not simply aggregate probabilistically per view hypotheses; b) actions are based on learnt disambiguating features from all views and are optimally selected using the powerful voting scheme of Random Forests and c) the classifier can take into account the costs of actions. The proposed framework was applied to the same task of autonomously unfolding clothes by a robot, addressing the problem of best viewpoint selection in classification, grasp point and pose estimation of garments. We show great performance improvement compared to state of the art methods and our previous POMDP formulation. Moving from deformable to rigid objects while keeping our interest to domestic robotic applications, we focus on object instance recognition and 3D pose estimation of household objects. We are particularly interested in realistic scenes that are very crowded and objects can be perceived under severe occlusions. Single shot-based 6D pose estimators with manually designed features are still unable to tackle such difficult scenarios for a variety of objects, motivating the research towards unsupervised feature learning and next-best-view estimation. We present a complete framework for both single shot-based 6D object pose estimation and next-best-view prediction based on Hough Forests, the state of the art object pose estimator that performs classification and regression jointly. Rather than using manually designed features we propose an unsupervised feature learnt from depth-invariant patches using a Sparse Autoencoder. Furthermore, taking advantage of the clustering performed in the leaf nodes of Hough Forests, we learn to estimate the reduction of uncertainty in other views, formulating the problem of selecting the next-best-view. To further improve 6D object pose estimation, we propose an improved joint registration and hypotheses verification module as a final refinement step to reject false detections. We provide two additional challenging datasets inspired from realistic scenarios to extensively evaluate the state of the art and our framework. One is related to domestic environments and the other depicts a bin-picking scenario mostly found in industrial settings. We show that our framework significantly outperforms state of the art both on public and on our datasets. Unsupervised feature learning, although efficient, might produce sub-optimal features for our particular tast. Therefore in our last work, we leverage the power of Convolutional Neural Networks to tackled the problem of estimating the pose of rigid objects by an end-to-end deep regression network. To improve the moderate performance of the standard regression objective function, we introduce the Siamese Regression Network. For a given image pair, we enforce a similarity measure between the representation of the sample images in the feature and pose space respectively, that is shown to boost regression performance. Furthermore, we argue that our pose-guided feature learning using our Siamese Regression Network generates more discriminative features that outperform the state of the art. Last, our feature learning formulation provides the ability of learning features that can perform under severe occlusions, demonstrating high performance on our novel hand-object dataset. Concluding, this work is a research on the area of object detection and pose estimation in 3D space, on a variety of object types. Furthermore we investigate how accuracy can be further improved by applying active vision techniques to optimally move the camera view to minimize the detection error.Open Acces

    Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images

    Full text link
    We propose a simple and efficient method for exploiting synthetic images when training a Deep Network to predict a 3D pose from an image. The ability of using synthetic images for training a Deep Network is extremely valuable as it is easy to create a virtually infinite training set made of such images, while capturing and annotating real images can be very cumbersome. However, synthetic images do not resemble real images exactly, and using them for training can result in suboptimal performance. It was recently shown that for exemplar-based approaches, it is possible to learn a mapping from the exemplar representations of real images to the exemplar representations of synthetic images. In this paper, we show that this approach is more general, and that a network can also be applied after the mapping to infer a 3D pose: At run time, given a real image of the target object, we first compute the features for the image, map them to the feature space of synthetic images, and finally use the resulting features as input to another network which predicts the 3D pose. Since this network can be trained very effectively by using synthetic images, it performs very well in practice, and inference is faster and more accurate than with an exemplar-based approach. We demonstrate our approach on the LINEMOD dataset for 3D object pose estimation from color images, and the NYU dataset for 3D hand pose estimation from depth maps. We show that it allows us to outperform the state-of-the-art on both datasets.Comment: CVPR 201

    PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes

    Full text link
    Estimating the 6D pose of known objects is important for robots to interact with the real world. The problem is challenging due to the variety of objects as well as the complexity of a scene caused by clutter and occlusions between objects. In this work, we introduce PoseCNN, a new Convolutional Neural Network for 6D object pose estimation. PoseCNN estimates the 3D translation of an object by localizing its center in the image and predicting its distance from the camera. The 3D rotation of the object is estimated by regressing to a quaternion representation. We also introduce a novel loss function that enables PoseCNN to handle symmetric objects. In addition, we contribute a large scale video dataset for 6D object pose estimation named the YCB-Video dataset. Our dataset provides accurate 6D poses of 21 objects from the YCB dataset observed in 92 videos with 133,827 frames. We conduct extensive experiments on our YCB-Video dataset and the OccludedLINEMOD dataset to show that PoseCNN is highly robust to occlusions, can handle symmetric objects, and provide accurate pose estimation using only color images as input. When using depth data to further refine the poses, our approach achieves state-of-the-art results on the challenging OccludedLINEMOD dataset. Our code and dataset are available at https://rse-lab.cs.washington.edu/projects/posecnn/.Comment: Accepted to RSS 201

    Improving Cytoarchitectonic Segmentation of Human Brain Areas with Self-supervised Siamese Networks

    Full text link
    Cytoarchitectonic parcellations of the human brain serve as anatomical references in multimodal atlas frameworks. They are based on analysis of cell-body stained histological sections and the identification of borders between brain areas. The de-facto standard involves a semi-automatic, reproducible border detection, but does not scale with high-throughput imaging in large series of sections at microscopical resolution. Automatic parcellation, however, is extremely challenging due to high variation in the data, and the need for a large field of view at microscopic resolution. The performance of a recently proposed Convolutional Neural Network model that addresses this problem especially suffers from the naturally limited amount of expert annotations for training. To circumvent this limitation, we propose to pre-train neural networks on a self-supervised auxiliary task, predicting the 3D distance between two patches sampled from the same brain. Compared to a random initialization, fine-tuning from these networks results in significantly better segmentations. We show that the self-supervised model has implicitly learned to distinguish several cortical brain areas -- a strong indicator that the proposed auxiliary task is appropriate for cytoarchitectonic mapping.Comment: Accepted at MICCAI 201
    • …
    corecore