91 research outputs found

    Scalable and high-sensitivity readout of silicon quantum devices

    Get PDF
    Quantum computing is predicted to provide unprecedented enhancements in computational power. A quantum computer requires implementation of a well-defined and controlled quantum system of many interconnected qubits, each defined using fragile quantum states. The interest in a spin-based quantum computer in silicon stems from demonstrations of very long spin-coherence times, high-fidelity single spin control and compatibility with industrial mass-fabrication. Industrial scale fabrication of the silicon platform offers a clear route towards a large-scale quantum computer, however, some of the processes and techniques employed in qubit demonstrators are incompatible with a dense and foundry-fabricated architecture. In particular, spin-readout utilises external sensors that require nearly the same footprint as qubit devices. In this thesis, improved readout techniques for silicon quantum devices are presented and routes towards implementation of a scalable and high-sensitivity readout architecture are investigated. Firstly, readout sensitivity of compact gate-based sensors is improved using a high-quality factor resonator and Josephson parametric amplifier that are fabricated separately from quantum dots. Secondly, an integrated transistor-based control circuit is presented using which sequential readout of two quantum dot devices using the same gate-based sensor is achieved. Finally, a large-scale readout architecture based on random-access and frequency multiplexing is introduced. The impact of readout circuit footprint on readout sensitivity is determined, showing routes towards integration of conventional circuits with quantum devices in a dense architecture, and a fault-tolerant architecture based on mediated exchange is introduced, capable of relaxing the limitations on available control circuit footprint per qubit. Demonstrations are based on foundry-fabricated transistors and few-electron quantum dots, showing that industry fabrication is a viable route towards quantum computation at a scale large enough to begin addressing the most challenging computational problems

    Parametric Interaction in Josephson Junction Circuits and Transmission Lines

    Get PDF
    This research investigates the realization of parametric amplification in superconducting circuits and structures where nonlinearity is provided by Josephson junction (JJ) elements. We aim to develop a systematic analysis over JJ-based devices toward design of novel traveling-wave Josephson parametric amplifiers (TW-JPA). Chapters of this thesis fall into three categories: lumped JPA, superconducting periodic structures and discrete Josephson transmission lines (DJTL). The unbiased Josephson junction (JJ) is a nonlinear element suitable for parametric amplification through a four-photon process. Two circuit topologies are introduced to capture the unique property of the JJ in order to efficiently mix signal, pump and idler signals for the purpose of signal amplification. Closed-form expressions are derived for gain characteristics, bandwidth determination, noise properties and impedance for this kind of parametric power amplifier. The concept of negative resistance in the gain formulation is observed. A design process is also introduced to find the regimes of operation for gain achievement. Two regimes of operation, oscillation and amplification, are highlighted and distinguished in the result section. Optimization of the circuits to enhance the bandwidth is also carried out. Moving toward TW-JPA, the second part is devoted to modelling the linear wave propagation in a periodic superconducting structure. We derive closed-form equations for dispersion and s-parameters of infinite and finite periodic structures, respectively. Band gap formation is highlighted and its potential applications in the design of passive filters and resonators are discussed. The superconducting structures are fabricated using YBCO and measured, illustrating a good correlation with the numerical results. A novel superconducting Transmission Line (TL), which is periodically loaded by Josephson junctions (JJ) and assisted by open stubs, is proposed as a platform to realize a traveling-wave parametric device. Using the TL model, this structure is modeled by a system of nonlinear partial differential equations (PDE) with a driving source and mixed-boundary conditions at the input and output terminals, respectively. This model successfully emulates parametric and nonlinear microwave propagation when long-wave approximation is applicable. The influence of dispersion to sustain three non-degenerate phased-locked waves through the TL is highlighted. A rigorous and robust Finite Difference Time Domain (FDTD) solver based on the explicit Lax-Wendroff and implicit Crank-Nicolson schemes has been developed to investigate the device responses under various excitations. Linearization of the wave equation, under small-amplitude assumption, dispersion and impedance analysis is performed to explore more aspects of the device for the purpose of efficient design of a traveling-wave parametric amplifier. Knowing all microwave characteristics and identifying different regimes of operation, which include impedance properties, cut-off propagation, dispersive behaviour and shock-wave formation, we exploit perturbation theory accompanied by the method of multiple scale to derive the three nonlinear coupled amplitude equations to describe the parametric interaction. A graphical technique is suggested to find three waves on the dispersion diagram satisfying the phase-matching conditions. Both cases of perfect phase-matching and slight mismatching are addressed in this work. The incorporation of two numerical techniques, spectral method in space and multistep Adams-Bashforth in time domain, is employed to monitor the unilateral gain, superior stability and bandwidth of this structure. Two types of functionality, mixing and amplification, with their requirements are described. These properties make this structure desirable for applications ranging from superconducting optoelectronics to dispersive readout of superconducting qubits where high sensitivity and ultra-low noise operation is required.1 yea

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Bolometers

    Get PDF
    Infrared Detectors and technologies are very important for a wide range of applications, not only for Military but also for various civilian applications. Comparatively fast bolometers can provide large quantities of low cost devices opening up a new era in infrared technologies. This book deals with various aspects of bolometer developments. It covers bolometer material aspects, different types of bolometers, performance limitations, applications and future trends. The chapters in this book will be useful for senior researchers as well as beginning graduate students

    High gain and bandwidth current-mode amplifiers : study and implementation

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaEsta tese aborda o problema do projecto de amplificadores com grandes produtos de ganho por largura de banda. A aplicação final considerada consistiu no projecto de amplificadores adequados à recepção de sinais ópticos em sistemas de transmissão ópticos usando o espaço livre. Neste tipo de sistemas as maiores limitações de ganho e largura de banda surgem nos circuitos de entrada. O uso de detectores ópticos com grande área fotosensível é uma necessidade comum neste tipo de sistemas. Estes detectores apresentam grandes capacidades intrínsecas, o que em conjunto com a impedância de entrada apresentada pelo amplificador estabelece sérias restrições no produto do ganho pela largura de banda. As técnicas mais tradicionais para combater este problema recorrem ao uso de amplificadores com retroacção baseados em configurações de transimpedância. Estes amplificadores apresentam baixas impedâncias de entrada devido à acção da retroacção. Contudo, os amplificadores de transimpedância também apresentam uma relação directa entre o ganho e a impedância de entrada. Logo, diminuir a impedância de entrada implica diminuir o ganho. Esta tese propõe duas técnicas novas para combater os problemas referidos. A primeira técnica tem por base uma propriedade fundamental dos amplificadores com retroacção. Em geral, todos os circuitos electrónicos têm tempos de atraso associados, os amplificadores com retroacção não são uma excepção a esta regra. Os tempos de atraso são em geral reconhecidos como elementos instabilizadores neste tipos da amplificadores. Contudo, se usados judiciosamente, este tempos de atraso podem ser explorados como uma forma da aumentar a largura de banda em amplificadores com retroacção. Com base nestas ideias, esta tese apresenta o conceito geral de reatroacção com atraso, como um método de optimização de largura de banda em amplificadores com retroacção. O segundo método baseia-se na destruição da dualidade entre ganho e impedância de entrada existente nos amplificadores de transimpedância. O conceito de adaptação activa em modo de corrente é neste sentido uma forma adequada para separar o detector óptico da entrada do amplificador. De acordo com este conceito, emprega-se um elemento de adaptação em modo de corrente para isolar o detector óptico da entrada do amplificador. Desta forma as tradicionais limitações de ganho e largura de banda podem ser tratadas em separado. Esta tese defende o uso destas técnicas no desenho de amplificadores de transimpedância para sistemas de recepção de sinais ópticos em espaço livre.This thesis addresses the problem of achieving high gain-bandwidth products in amplifiers. The adopted framework consisted on the design of a free-space optical (FSO) front end amplifier able to amplify very small optical signals over large frequency bandwidths. The major gain-bandwidth limitations in FSO front end amplifiers arise due to the input circuitry. Usually, it is necessary to have large area optical detectors in order to maximize signal reception. These detectors have large intrinsic capacitances, which together with the amplifier input impedance poses a severe restriction on the gain-bandwidth product. Traditional techniques to combat this gain-bandwidth limitation resort to feedback amplifiers consisting on transimpedance configurations. These amplifiers have small input impedances due to the feedback action. Nevertheless, transimpedance amplifiers have a direct relation between gain and input impedance. Thus reducing the input impedance usually implies reducing the gain. This thesis advances two new methods suitable to combat the above mentioned problems. The first method is based on a fundamental property of feedback amplifiers. In general, all electronic circuits have associated time delays, and feedback amplifiers are not an exception to this rule. Time delays in feedback amplifiers have been recognized as destabilizing elements. Nevertheless, when used with appropriate care, these delays can be exploited as bandwidth enhancement elements. Based on these ideas, this thesis presents the general concept of delayed feedback, as a bandwidth optimization method suitable for feedback amplifiers. The second method is based on the idea of destroying the impedance-gain duality in transimpedance amplifiers. The concept of active current matching is in this sense a suitable method to detach the optical detector from the transimpedance amplifier input. According to this concept, a current matching device (CMD) is used to convey the signal current sensed by the optical detector, to the amplifier’s input. Using this concept the traditional gainbandwidth limitations can be treated in a separate fashion. This thesis advocates the usage of these techniques for the design of transimpedance amplifiers suited for FSO receiving systems

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Journal of Telecommunications and Information Technology, 2000, nr 3,4

    Get PDF
    kwartalni
    corecore