1,629 research outputs found

    The Tchebyshev transforms of the first and second kind

    Full text link
    We give an in-depth study of the Tchebyshev transforms of the first and second kind of a poset, recently discovered by Hetyei. The Tchebyshev transform (of the first kind) preserves desirable combinatorial properties, including Eulerianess (due to Hetyei) and EL-shellability. It is also a linear transformation on flag vectors. When restricted to Eulerian posets, it corresponds to the Billera, Ehrenborg and Readdy omega map of oriented matroids. One consequence is that nonnegativity of the cd-index is maintained. The Tchebyshev transform of the second kind is a Hopf algebra endomorphism on the space of quasisymmetric functions QSym. It coincides with Stembridge's peak enumerator for Eulerian posets, but differs for general posets. The complete spectrum is determined, generalizing work of Billera, Hsiao and van Willigenburg. The type B quasisymmetric function of a poset is introduced. Like Ehrenborg's classical quasisymmetric function of a poset, this map is a comodule morphism with respect to the quasisymmetric functions QSym. Similarities among the omega map, Ehrenborg's r-signed Birkhoff transform, and the Tchebyshev transforms motivate a general study of chain maps. One such occurrence, the chain map of the second kind, is a Hopf algebra endomorphism on the quasisymmetric functions QSym and is an instance of Aguiar, Bergeron and Sottile's result on the terminal object in the category of combinatorial Hopf algebras. In contrast, the chain map of the first kind is both an algebra map and a comodule endomorphism on the type B quasisymmetric functions BQSym.Comment: 33 page

    Ehrenfeucht-Fraisse Games on Omega-Terms

    Get PDF
    Fragments of first-order logic over words can often be characterized in terms of finite monoids or finite semigroups. Usually these algebraic descriptions yield decidability of the question whether a given regular language is definable in a particular fragment. An effective algebraic characterization can be obtained from identities of so-called omega-terms. In order to show that a given fragment satisfies some identity of omega-terms, one can use Ehrenfeucht-Fraisse games on word instances of the omega-terms. The resulting proofs often require a significant amount of book-keeping with respect to the constants involved. In this paper we introduce Ehrenfeucht-Fraisse games on omega-terms. To this end we assign a labeled linear order to every omega-term. Our main theorem shows that a given fragment satisfies some identity of omega-terms if and only if Duplicator has a winning strategy for the game on the resulting linear orders. This allows to avoid the book-keeping. As an application of our main result, we show that one can decide in exponential time whether all aperiodic monoids satisfy some given identity of omega-terms, thereby improving a result of McCammond (Int. J. Algebra Comput., 2001)

    Analyze Large Multidimensional Datasets Using Algebraic Topology

    Get PDF
    This paper presents an efficient algorithm to extract knowledge from high-dimensionality, high- complexity datasets using algebraic topology, namely simplicial complexes. Based on concept of isomorphism of relations, our method turn a relational table into a geometric object (a simplicial complex is a polyhedron). So, conceptually association rule searching is turned into a geometric traversal problem. By leveraging on the core concepts behind Simplicial Complex, we use a new technique (in computer science) that improves the performance over existing methods and uses far less memory. It was designed and developed with a strong emphasis on scalability, reliability, and extensibility. This paper also investigate the possibility of Hadoop integration and the challenges that come with the framework

    On the impact of communication complexity in the design of parallel numerical algorithms

    Get PDF
    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation

    The Official Student Newspaper of UAS

    Get PDF
    UAS Answers: Everybody's got one... -- A Letter from the Editor -- Lighting up the Night -- Reshaping Dining Services -- A Taste of World Hunger -- Holiday Bound -- Watch it, Skippy -- Better than Ramen -- Campus Calenda

    Acta Cybernetica : Volume 17. Number 4.

    Get PDF
    corecore