285 research outputs found

    On the Shuffle Automaton Size for Words

    Full text link
    We investigate the state size of DFAs accepting the shuffle of two words. We provide words u and v, such that the minimal DFA for u shuffled with v requires an exponential number of states. We also show some conditions for the words u and v which ensure a quadratic upper bound on the state size of u shuffled with v. Moreover, switching only two letters within one of u or v is enough to trigger the change from quadratic to exponential

    Decomposition and Descriptional Complexity of Shuffle on Words and Finite Languages

    Get PDF
    We investigate various questions related to the shuffle operation on words and finite languages. First we investigate a special variant of the shuffle decomposition problem for regular languages, namely, when the given regular language is the shuffle of finite languages. The shuffle decomposition into finite languages is, in general not unique. Thatis,therearelanguagesL^,L2,L3,L4withLiluL2= ÂŁ3luT4but{L\,L2}^ {I/3, L4}. However, if all four languages are singletons (with at least two combined letters), it follows by a result of Berstel and Boasson [6], that the solution is unique; that is {L\,L2} = {L3,L4}. We extend this result to show that if L\ and L2 are arbitrary finite sets and Lz and Z-4 are singletons (with at least two letters in each), the solution is unique. This is as strong as it can be, since we provide examples showing that the solution can be non-unique already when (1) both L\ and L2 are singleton sets over different unary alphabets; or (2) L\ contains two words and L2 is singleton. We furthermore investigate the size of shuffle automata for words. It was shown by Campeanu, K. Salomaa and Yu in [11] that the minimal shuffle automaton of two regular languages requires 2mn states in the worst case (where the minimal automata of the two component languages had m and n states, respectively). It was also recently shown that there exist words u and v such that the minimal shuffle iii DFA for u and v requires an exponential number of states. We study the size of shuffle DFAs for restricted cases of words, namely when the words u and v are both periods of a common underlying word. We show that, when the underlying word obeys certain conditions, then the size of the minimal shuffle DFA for u and v is at most quadratic. Moreover we provide an efficient algorithm, which decides for a given DFA A and two words u and v, whether u lu u C L(A)

    Methods for relativizing properties of codes

    Get PDF
    The usual setting for information transmission systems assumes that all words over the source alphabet need to be encoded. The demands on encodings of messages with respect to decodability, error-detection, etc. are thus relative to the whole set of words. In reality, depending on the information source, far fewer messages are transmitted, all belonging to some specific language. Hence the original demands on encodings can be weakened, if only the words in that language are to be considered. This leads one to relativize the properties of encodings or codes to the language at hand. We analyse methods of relativization in this sense. It seems there are four equally convincing notions of relativization. We compare those. Each of them has their own merits for specific code properties. We clarify the differences between the four approaches. We also consider the decidability of relativized properties. If P is a property defining a class of codes and L is a language, one asks, for a given language C, whether C satisfies P relative to L. We show that in the realm of regular languages this question is mostly decidable

    On generating series of finitely presented operads

    Full text link
    Given an operad P with a finite Groebner basis of relations, we study the generating functions for the dimensions of its graded components P(n). Under moderate assumptions on the relations we prove that the exponential generating function for the sequence {dim P(n)} is differential algebraic, and in fact algebraic if P is a symmetrization of a non-symmetric operad. If, in addition, the growth of the dimensions of P(n) is bounded by an exponent of n (or a polynomial of n, in the non-symmetric case) then, moreover, the ordinary generating function for the above sequence {dim P(n)} is rational. We give a number of examples of calculations and discuss conjectures about the above generating functions for more general classes of operads.Comment: Minor changes; references to recent articles by Berele and by Belov, Bokut, Rowen, and Yu are adde

    Factorizations of languages and commutativity conditions

    Get PDF
    Representations of languages as a product (catenation) of languages are investigated, where the factor languages are "prime", that is, cannot be decomposed further in a nontrivial manner. In general, such prime decompositions do not necessarily exist. If they exist, they are not necessarily unique - the number of factors can vary even exponentially. The paper investigates prime decompositions, as well as the commuting of the factors, especially for the case of finite languages. In particular, a technique about commuting is developed in Section 4, where the factorization of languages L1 and L2 is discussed under the assumption L1L2 = L2L1

    On shuffle ideals of general algebras

    Get PDF
    We extend a word language concept called shuffle ideal to general algebras. For this purpose, we introduce the relation SH and show that there exists a natural connection between this relation and the homeomorphic embedding order on trees. We establish connections between shuffle ideals, monotonically ordered algebras and automata, and piecewise testable tree languages

    Regular Choice Functions and Uniformisations For countable Domains

    Get PDF
    We view languages of words over a product alphabet A x B as relations between words over A and words over B. This leads to the notion of regular relations - relations given by a regular language. We ask when it is possible to find regular uniformisations of regular relations. The answer depends on the structure or shape of the underlying model: it is true e.g. for ?-words, while false for words over ? or for infinite trees. In this paper we focus on countable orders. Our main result characterises, which countable linear orders D have the property that every regular relation between words over D has a regular uniformisation. As it turns out, the only obstacle for uniformisability is the one displayed in the case of ? - non-trivial automorphisms of the given structure. Thus, we show that either all regular relations over D have regular uniformisations, or there is a non-trivial automorphism of D and even the simple relation of choice cannot be uniformised. Moreover, this dichotomy is effective

    Site-Directed Insertion: Decision Problems, Maximality and Minimality

    Get PDF
    Site-directed insertion is an overlapping insertion operation that can be viewed as analogous to the overlap assembly or chop operations that concatenate strings by overlapping a suffix and a prefix of the argument strings. We consider decision problems and language equations involving site-directed insertion. By relying on the tools provided by semantic shuffle on trajectories we show that one variable equations involving site-directed insertion and regular constants can be solved. We consider also maximal and minimal variants of the site-directed insertion operation
    • …
    corecore