768 research outputs found

    Partially Linear Estimation with Application to Sparse Signal Recovery From Measurement Pairs

    Full text link
    We address the problem of estimating a random vector X from two sets of measurements Y and Z, such that the estimator is linear in Y. We show that the partially linear minimum mean squared error (PLMMSE) estimator does not require knowing the joint distribution of X and Y in full, but rather only its second-order moments. This renders it of potential interest in various applications. We further show that the PLMMSE method is minimax-optimal among all estimators that solely depend on the second-order statistics of X and Y. We demonstrate our approach in the context of recovering a signal, which is sparse in a unitary dictionary, from noisy observations of it and of a filtered version of it. We show that in this setting PLMMSE estimation has a clear computational advantage, while its performance is comparable to state-of-the-art algorithms. We apply our approach both in static and dynamic estimation applications. In the former category, we treat the problem of image enhancement from blurred/noisy image pairs, where we show that PLMMSE estimation performs only slightly worse than state-of-the art algorithms, while running an order of magnitude faster. In the dynamic setting, we provide a recursive implementation of the estimator and demonstrate its utility in the context of tracking maneuvering targets from position and acceleration measurements.Comment: 13 pages, 5 figure

    Revisiting maximum-a-posteriori estimation in log-concave models

    Get PDF
    Maximum-a-posteriori (MAP) estimation is the main Bayesian estimation methodology in imaging sciences, where high dimensionality is often addressed by using Bayesian models that are log-concave and whose posterior mode can be computed efficiently by convex optimisation. Despite its success and wide adoption, MAP estimation is not theoretically well understood yet. The prevalent view in the community is that MAP estimation is not proper Bayesian estimation in a decision-theoretic sense because it does not minimise a meaningful expected loss function (unlike the minimum mean squared error (MMSE) estimator that minimises the mean squared loss). This paper addresses this theoretical gap by presenting a decision-theoretic derivation of MAP estimation in Bayesian models that are log-concave. A main novelty is that our analysis is based on differential geometry, and proceeds as follows. First, we use the underlying convex geometry of the Bayesian model to induce a Riemannian geometry on the parameter space. We then use differential geometry to identify the so-called natural or canonical loss function to perform Bayesian point estimation in that Riemannian manifold. For log-concave models, this canonical loss is the Bregman divergence associated with the negative log posterior density. We then show that the MAP estimator is the only Bayesian estimator that minimises the expected canonical loss, and that the posterior mean or MMSE estimator minimises the dual canonical loss. We also study the question of MAP and MSSE estimation performance in large scales and establish a universal bound on the expected canonical error as a function of dimension, offering new insights into the good performance observed in convex problems. These results provide a new understanding of MAP and MMSE estimation in log-concave settings, and of the multiple roles that convex geometry plays in imaging problems.Comment: Accepted for publication in SIAM Imaging Science

    Regularized Block Toeplitz Covariance Matrix Estimation via Kronecker Product Expansions

    Full text link
    In this work we consider the estimation of spatio-temporal covariance matrices in the low sample non-Gaussian regime. We impose covariance structure in the form of a sum of Kronecker products decomposition (Tsiligkaridis et al. 2013, Greenewald et al. 2013) with diagonal correction (Greenewald et al.), which we refer to as DC-KronPCA, in the estimation of multiframe covariance matrices. This paper extends the approaches of (Tsiligkaridis et al.) in two directions. First, we modify the diagonally corrected method of (Greenewald et al.) to include a block Toeplitz constraint imposing temporal stationarity structure. Second, we improve the conditioning of the estimate in the very low sample regime by using Ledoit-Wolf type shrinkage regularization similar to (Chen, Hero et al. 2010). For improved robustness to heavy tailed distributions, we modify the KronPCA to incorporate robust shrinkage estimation (Chen, Hero et al. 2011). Results of numerical simulations establish benefits in terms of estimation MSE when compared to previous methods. Finally, we apply our methods to a real-world network spatio-temporal anomaly detection problem and achieve superior results.Comment: To appear at IEEE SSP 2014 4 page

    Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding

    Full text link
    In this work, we propose a subspace-based algorithm for DOA estimation which iteratively reduces the disturbance factors of the estimated data covariance matrix and incorporates prior knowledge which is gradually obtained on line. An analysis of the MSE of the reshaped data covariance matrix is carried out along with comparisons between computational complexities of the proposed and existing algorithms. Simulations focusing on closely-spaced sources, where they are uncorrelated and correlated, illustrate the improvements achieved.Comment: 7 figures. arXiv admin note: text overlap with arXiv:1703.1052
    • …
    corecore