928 research outputs found

    Should {\Delta}{\Sigma} Modulators Used in AC Motor Drives be Adapted to the Mechanical Load of the Motor?

    Full text link
    We consider the use of {\Delta}{\Sigma} modulators in ac motor drives, focusing on the many additional degrees of freedom that this option offers over Pulse Width Modulation (PWM). Following some recent results, we show that it is possible to fully adapt the {\Delta}{\Sigma} modulator Noise Transfer Function (NTF) to the rest of the drive chain and that the approach can be pushed even to a fine adaptation of the NTF to the specific motor loading condition. We investigate whether and to what extent the adaptation should be pursued. Using a representative test case and extensive simulation, we conclude that a mild adaptation can be beneficial, leading to Signal to Noise Ratio (SNR) improvements in the order a few dB, while the advantage pushing the adaptation to the load tracking is likely to be minimal.Comment: Sample code available at http://pydsm.googlecode.co

    Noise Weighting in the Design of {\Delta}{\Sigma} Modulators (with a Psychoacoustic Coder as an Example)

    Full text link
    A design flow for {\Delta}{\Sigma} modulators is illustrated, allowing quantization noise to be shaped according to an arbitrary weighting profile. Being based on FIR NTFs, possibly with high order, the flow is best suited for digital architectures. The work builds on a recent proposal where the modulator is matched to the reconstruction filter, showing that this type of optimization can benefit a wide range of applications where noise (including in-band noise) is known to have a different impact at different frequencies. The design of a multiband modulator, a modulator avoiding DC noise, and an audio modulator capable of distributing quantization artifacts according to a psychoacoustic model are discussed as examples. A software toolbox is provided as a general design aid and to replicate the proposed results.Comment: 5 pages, 18 figures, journal. Code accompanying the paper is available at http://pydsm.googlecode.co

    Output Filter Aware Optimization of the Noise Shaping Properties of {\Delta}{\Sigma} Modulators via Semi-Definite Programming

    Full text link
    The Noise Transfer Function (NTF) of {\Delta}{\Sigma} modulators is typically designed after the features of the input signal. We suggest that in many applications, and notably those involving D/D and D/A conversion or actuation, the NTF should instead be shaped after the properties of the output/reconstruction filter. To this aim, we propose a framework for optimal design based on the Kalman-Yakubovich-Popov (KYP) lemma and semi-definite programming. Some examples illustrate how in practical cases the proposed strategy can outperform more standard approaches.Comment: 14 pages, 18 figures, journal. Code accompanying the paper is available at http://pydsm.googlecode.co

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    Application of DSP in Power Conversion Systems — A Practical Approach for Multiphase Drives

    Get PDF
    Digital Signal Processing is not a recent research field, but has become a powerful technology to solve engineering problems in the last few decades due to the introduction by Texas Instruments in 1982 of the Digital Signal Processor. Fast digital signal processors have quickly become a cornerstone of high-performance electrical drives, where power electronic conversion systems have heavy online computation burdens and must be controlled using complex control algorithms. In this sense, multiphase drives represent a particularly interesting case of study, where the computational cost highly increases with each extra phase. This technology has been recognized in recent times as an attractive electrical drive due to its usefulness in traction, more-electric aircraft applications and wind power generation systems. However, the complexity of the required control algorithms and signal processing techniques notably increases in relation with conventional three-phase drives. This chapter makes a revision of the necessities of a high-performance multiphase drive from the digital signal processing perspective. One of the most powerful Texas Instruments’ digital signal processor (TMS320F28335) is used, and specific control algorithms, electronic circuits and acquisition processing methods are designed, implemented and analyzed to show its interest in the development of a high-performance multiphase drive

    University of Maryland walking robot: A design project for undergraduate students

    Get PDF
    The design and construction required that the walking robot machine be capable of completing a number of tasks including walking in a straight line, turning to change direction, and maneuvering over an obstable such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear-box and crank-arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating the machine about this support. The machine can be controlled by using either a user operated remote tether or the on-board computer for the execution of control commands. Absolute encoders are attached to all motors (leg, main drive, and Bigfoot) to provide the control computer with information regarding the status of the motors (up-down motion, forward or reverse rotation). Long and short range infrared sensors provide the computer with feedback information regarding the machine's relative position to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars

    Comparison of Hysteresis Based PWM Schemes ΔΣ-PWM and Direct Torque Control

    Get PDF
    This paper presents the differences and similarities of ΔΣ-PWM as a hysteresis-based PWM scheme with direct torque control (DTC) using simulation models. The variable switching frequency caused by the hysteresis element is examined with regard to its instantaneous values. The comparison is based on an equal maximum switching frequency as a design criterion. With this first assumption, the variation of the instantaneous switching frequency is higher when using DTC because of the temporary prioritization of one inverter leg. Besides the lower variation, ΔΣ-PWM shows a higher average switching frequency. Because the switching frequency is related to the torque ripple, the usage of ΔΣ-PWM results in a smaller torque ripple. Due to the dependence of torque ripple on switching frequency, a second comparison is carried out based on the same average switching frequency. In this comparison the ΔΣ-PWM shows higher torque ripple than DTC

    Partial discharge testing in aeronautic environment on magnet wire and feeder cables

    Get PDF
    Rationalization of energy sources aboard aircraft and improvements in more electric technologies are pushing the aeronautic industry to meet the all-electric aircraft challenge. As a result, onboard power has been steadily increasing, reaching 1MW for B787. AC and HVDC network voltage have followed reaching 230VAC and 540VDC increasing the likeliness of partial discharge. In the future, this shift will lead to the complete redesign of the architecture of onboard power systems. The aim of this study is to characterize the partial discharge inception voltage, with the aforementioned constraints in mind, on two components of the electromechanical chain: magnet wires used in electric actuators and feeder cable used in harness

    Fault-Tolerant Torque Controller Based on Adaptive Decoupled Multi-Stator Modeling for Multi-Three-Phase Induction Motor Drives

    Get PDF
    Among the multiphase solutions, multi-three-phase drives are becoming more and more widespread in practice as they can be modularly supplied by conventional three-phase inverters. The literature reports several control approaches to perform the torque regulation of multi-three-phase machines. Most of such solutions use the vector space decomposition (VSD) approach since it allows the control of a multi-three-phase machine using the conventional control schemes of three-phase drives, thus reducing the complexity of the control algorithm. However, this advantage is practically lost in the case of open-three-phase faults. Indeed, the postfault operation of the VSD-based drive schemes requires the implementation of additional control modules, often specifically designed for the machine under consideration. Therefore, this article aims to propose a novel control approach that allows using any control scheme developed for three-phase motors to perform the torque regulation of a multi-three-phase machine both in healthy and faulty operation. In this way, the previously mentioned drawbacks of the VSD-based control schemes in dealing with the faulty operation of the machine are avoided. Moreover, the simplicity of the control algorithm is always preserved, regardless of the machine's operating condition. The proposed solution has been experimentally validated through a 12-phase induction motor, rated 10 kW at 6000 r/min, using a quadruple-three-phase configuration of the stator winding

    Fault-Tolerant Torque Controller Based on Adaptive Decoupled Multi-Stator Modeling for Multi-Three-Phase Induction Motor Drives

    Get PDF
    Among the multiphase solutions, multi-three- phase drives are becoming more and more widespread in practice as they can be modularly supplied by conventional three-phase inverters. The literature reports several control approaches to perform the torque regulation of multi-three- phase machines. Most of such solutions use the vector space decomposition (VSD) approach since it allows the control of a multi-three-phase machine using the conventional control schemes of three-phase drives, thus reducing the complexity of the control algorithm. However, this advantage is practically lost in the case of open-three-phase faults. Indeed, the post-fault operation of the VSD-based drive schemes requires the implementation of additional control modules, often specifically designed for the machine under consideration. Therefore, this paper aims to propose a novel control approach that allows using any control scheme developed for three-phase motors to perform the torque regulation of a multi-three-phase machine both in healthy and faulty operation. In this way, the previously mentioned drawbacks of the VSD-based control schemes in dealing with the faulty operation of the machine are avoided. Moreover, the simplicity of the control algorithm is always preserved, regardless of the machine's operating condition. The proposed solution has been experimentally validated through a 12-phase induction motor, rated 10 kW at 6000 r/min, using a quadruple-three-phase configuration of the stator windin
    • …
    corecore