8,173 research outputs found

    A Deep Siamese Network for Scene Detection in Broadcast Videos

    Get PDF
    We present a model that automatically divides broadcast videos into coherent scenes by learning a distance measure between shots. Experiments are performed to demonstrate the effectiveness of our approach by comparing our algorithm against recent proposals for automatic scene segmentation. We also propose an improved performance measure that aims to reduce the gap between numerical evaluation and expected results, and propose and release a new benchmark dataset.Comment: ACM Multimedia 201

    Who is the director of this movie? Automatic style recognition based on shot features

    Get PDF
    We show how low-level formal features, such as shot duration, meant as length of camera takes, and shot scale, i.e. the distance between the camera and the subject, are distinctive of a director's style in art movies. So far such features were thought of not having enough varieties to become distinctive of an author. However our investigation on the full filmographies of six different authors (Scorsese, Godard, Tarr, Fellini, Antonioni, and Bergman) for a total number of 120 movies analysed second by second, confirms that these shot-related features do not appear as random patterns in movies from the same director. For feature extraction we adopt methods based on both conventional and deep learning techniques. Our findings suggest that feature sequential patterns, i.e. how features evolve in time, are at least as important as the related feature distributions. To the best of our knowledge this is the first study dealing with automatic attribution of movie authorship, which opens up interesting lines of cross-disciplinary research on the impact of style on the aesthetic and emotional effects on the viewers

    Modelling of content-aware indicators for effective determination of shot boundaries in compressed MPEG videos

    Get PDF
    In this paper, a content-aware approach is proposed to design multiple test conditions for shot cut detection, which are organized into a multiple phase decision tree for abrupt cut detection and a finite state machine for dissolve detection. In comparison with existing approaches, our algorithm is characterized with two categories of content difference indicators and testing. While the first category indicates the content changes that are directly used for shot cut detection, the second category indicates the contexts under which the content change occurs. As a result, indications of frame differences are tested with context awareness to make the detection of shot cuts adaptive to both content and context changes. Evaluations announced by TRECVID 2007 indicate that our proposed algorithm achieved comparable performance to those using machine learning approaches, yet using a simpler feature set and straightforward design strategies. This has validated the effectiveness of modelling of content-aware indicators for decision making, which also provides a good alternative to conventional approaches in this topic

    A COMPUTATION METHOD/FRAMEWORK FOR HIGH LEVEL VIDEO CONTENT ANALYSIS AND SEGMENTATION USING AFFECTIVE LEVEL INFORMATION

    No full text
    VIDEO segmentation facilitates e±cient video indexing and navigation in large digital video archives. It is an important process in a content-based video indexing and retrieval (CBVIR) system. Many automated solutions performed seg- mentation by utilizing information about the \facts" of the video. These \facts" come in the form of labels that describe the objects which are captured by the cam- era. This type of solutions was able to achieve good and consistent results for some video genres such as news programs and informational presentations. The content format of this type of videos is generally quite standard, and automated solutions were designed to follow these format rules. For example in [1], the presence of news anchor persons was used as a cue to determine the start and end of a meaningful news segment. The same cannot be said for video genres such as movies and feature films. This is because makers of this type of videos utilized different filming techniques to design their videos in order to elicit certain affective response from their targeted audience. Humans usually perform manual video segmentation by trying to relate changes in time and locale to discontinuities in meaning [2]. As a result, viewers usually have doubts about the boundary locations of a meaningful video segment due to their different affective responses. This thesis presents an entirely new view to the problem of high level video segmentation. We developed a novel probabilistic method for affective level video content analysis and segmentation. Our method had two stages. In the first stage, a®ective content labels were assigned to video shots by means of a dynamic bayesian 0. Abstract 3 network (DBN). A novel hierarchical-coupled dynamic bayesian network (HCDBN) topology was proposed for this stage. The topology was based on the pleasure- arousal-dominance (P-A-D) model of a®ect representation [3]. In principle, this model can represent a large number of emotions. In the second stage, the visual, audio and a®ective information of the video was used to compute a statistical feature vector to represent the content of each shot. Affective level video segmentation was achieved by applying spectral clustering to the feature vectors. We evaluated the first stage of our proposal by comparing its emotion detec- tion ability with all the existing works which are related to the field of a®ective video content analysis. To evaluate the second stage, we used the time adaptive clustering (TAC) algorithm as our performance benchmark. The TAC algorithm was the best high level video segmentation method [2]. However, it is a very computationally intensive algorithm. To accelerate its computation speed, we developed a modified TAC (modTAC) algorithm which was designed to be mapped easily onto a field programmable gate array (FPGA) device. Both the TAC and modTAC algorithms were used as performance benchmarks for our proposed method. Since affective video content is a perceptual concept, the segmentation per- formance and human agreement rates were used as our evaluation criteria. To obtain our ground truth data and viewer agreement rates, a pilot panel study which was based on the work of Gross et al. [4] was conducted. Experiment results will show the feasibility of our proposed method. For the first stage of our proposal, our experiment results will show that an average improvement of as high as 38% was achieved over previous works. As for the second stage, an improvement of as high as 37% was achieved over the TAC algorithm

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    Dynamic pictorial ontologies for video digital libraries annotation

    Full text link
    • …
    corecore