6,757 research outputs found

    Scene extraction in motion pictures

    Full text link
    This paper addresses the challenge of bridging the semantic gap between the rich meaning users desire when they query to locate and browse media and the shallowness of media descriptions that can be computed in today\u27s content management systems. To facilitate high-level semantics-based content annotation and interpretation, we tackle the problem of automatic decomposition of motion pictures into meaningful story units, namely scenes. Since a scene is a complicated and subjective concept, we first propose guidelines from fill production to determine when a scene change occurs. We then investigate different rules and conventions followed as part of Fill Grammar that would guide and shape an algorithmic solution for determining a scene. Two different techniques using intershot analysis are proposed as solutions in this paper. In addition, we present different refinement mechanisms, such as film-punctuation detection founded on Film Grammar, to further improve the results. These refinement techniques demonstrate significant improvements in overall performance. Furthermore, we analyze errors in the context of film-production techniques, which offer useful insights into the limitations of our method

    Video shot boundary detection: seven years of TRECVid activity

    Get PDF
    Shot boundary detection (SBD) is the process of automatically detecting the boundaries between shots in video. It is a problem which has attracted much attention since video became available in digital form as it is an essential pre-processing step to almost all video analysis, indexing, summarisation, search, and other content-based operations. Automatic SBD was one of the tracks of activity within the annual TRECVid benchmarking exercise, each year from 2001 to 2007 inclusive. Over those seven years we have seen 57 different research groups from across the world work to determine the best approaches to SBD while using a common dataset and common scoring metrics. In this paper we present an overview of the TRECVid shot boundary detection task, a high-level overview of the most significant of the approaches taken, and a comparison of performances, focussing on one year (2005) as an example

    Machine Learning for Video Repeat Mining

    Get PDF

    Semantic Based Sport Video Browsing

    Get PDF

    Segmentation and Classification of Multimodal Imagery

    Get PDF
    Segmentation and classification are two important computer vision tasks that transform input data into a compact representation that allow fast and efficient analysis. Several challenges exist in generating accurate segmentation or classification results. In a video, for example, objects often change the appearance and are partially occluded, making it difficult to delineate the object from its surroundings. This thesis proposes video segmentation and aerial image classification algorithms to address some of the problems and provide accurate results. We developed a gradient driven three-dimensional segmentation technique that partitions a video into spatiotemporal objects. The algorithm utilizes the local gradient computed at each pixel location together with the global boundary map acquired through deep learning methods to generate initial pixel groups by traversing from low to high gradient regions. A local clustering method is then employed to refine these initial pixel groups. The refined sub-volumes in the homogeneous regions of video are selected as initial seeds and iteratively combined with adjacent groups based on intensity similarities. The volume growth is terminated at the color boundaries of the video. The over-segments obtained from the above steps are then merged hierarchically by a multivariate approach yielding a final segmentation map for each frame. In addition, we also implemented a streaming version of the above algorithm that requires a lower computational memory. The results illustrate that our proposed methodology compares favorably well, on a qualitative and quantitative level, in segmentation quality and computational efficiency with the latest state of the art techniques. We also developed a convolutional neural network (CNN)-based method to efficiently combine information from multisensor remotely sensed images for pixel-wise semantic classification. The CNN features obtained from multiple spectral bands are fused at the initial layers of deep neural networks as opposed to final layers. The early fusion architecture has fewer parameters and thereby reduces the computational time and GPU memory during training and inference. We also introduce a composite architecture that fuses features throughout the network. The methods were validated on four different datasets: ISPRS Potsdam, Vaihingen, IEEE Zeebruges, and Sentinel-1, Sentinel-2 dataset. For the Sentinel-1,-2 datasets, we obtain the ground truth labels for three classes from OpenStreetMap. Results on all the images show early fusion, specifically after layer three of the network, achieves results similar to or better than a decision level fusion mechanism. The performance of the proposed architecture is also on par with the state-of-the-art results

    Information-theoretic temporal segmentation of video and applications: multiscale keyframes selection and shot boundaries detection

    Get PDF
    The first step in the analysis of video content is the partitioning of a long video sequence into short homogeneous temporal segments. The homogeneity property ensures that the segments are taken by a single camera and represent a continuous action in time and space. These segments can then be used as atomic temporal components for higher level analysis like browsing, classification, indexing and retrieval. The novelty of our approach is to use color information to partition the video into segments dynamically homogeneous using a criterion inspired by compact coding theory. We perform an information-based segmentation using a Minimum Message Length (MML) criterion and minimization by a Dynamic Programming Algorithm (DPA). We show that our method is efficient and robust to detect all types of transitions in a generic manner. A specific detector for each type of transition of interest therefore becomes unnecessary. We illustrate our technique by two applications: a multiscale keyframe selection and a generic shot boundaries detectio

    Toward automatic extraction of expressive elements from motion pictures : tempo

    Full text link
    This paper addresses the challenge of bridging the semantic gap that exists between the simplicity of features that can be currently computed in automated content indexing systems and the richness of semantics in user queries posed for media search and retrieval. It proposes a unique computational approach to extraction of expressive elements of motion pictures for deriving high-level semantics of stories portrayed, thus enabling rich video annotation and interpretation. This approach, motivated and directed by the existing cinematic conventions known as film grammar, as a first step toward demonstrating its effectiveness, uses the attributes of motion and shot length to define and compute a novel measure of tempo of a movie. Tempo flow plots are defined and derived for a number of full-length movies and edge analysis is performed leading to the extraction of dramatic story sections and events signaled by their unique tempo. The results confirm tempo as a useful high-level semantic construct in its own right and a promising component of others such as rhythm, tone or mood of a film. In addition to the development of this computable tempo measure, a study is conducted as to the usefulness of biasing it toward either of its constituents, namely, motion or shot length. Finally, a refinement is made to the shot length normalizing mechanism, driven by the peculiar characteristics of shot length distribution exhibited by movies. Results of these additional studies, and possible applications and limitations are discussed
    corecore