67 research outputs found

    Crowd Scene Analysis in Video Surveillance

    Get PDF
    There is an increasing interest in crowd scene analysis in video surveillance due to the ubiquitously deployed video surveillance systems in public places with high density of objects amid the increasing concern on public security and safety. A comprehensive crowd scene analysis approach is required to not only be able to recognize crowd events and detect abnormal events, but also update the innate learning model in an online, real-time fashion. To this end, a set of approaches for Crowd Event Recognition (CER) and Abnormal Event Detection (AED) are developed in this thesis. To address the problem of curse of dimensionality, we propose a video manifold learning method for crowd event analysis. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where adaptive quantization and binarization of the feature code are employed to improve the discriminant ability of crowd motion patterns. Using the feature code as input, a linear dimensionality reduction algorithm that preserves both the intrinsic spatial and temporal properties is proposed, where the generated low-dimensional video manifolds are conducted for CER and AED. Moreover, we introduce a framework for AED by integrating a novel incremental and decremental One-Class Support Vector Machine (OCSVM) with a sliding buffer. It not only updates the model in an online fashion with low computational cost, but also adapts to concept drift by discarding obsolete patterns. Furthermore, the framework has been improved by introducing Multiple Incremental and Decremental Learning (MIDL), kernel fusion, and multiple target tracking, which leads to more accurate and faster AED. In addition, we develop a framework for another video content analysis task, i.e., shot boundary detection. Specifically, instead of directly assessing the pairwise difference between consecutive frames over time, we propose to evaluate a divergence measure between two OCSVM classifiers trained on two successive frame sets, which is more robust to noise and gradual transitions such as fade-in and fade-out. To speed up the processing procedure, the two OCSVM classifiers are updated online by the MIDL proposed for AED. Extensive experiments on five benchmark datasets validate the effectiveness and efficiency of our approaches in comparison with the state of the art

    A survey on online active learning

    Full text link
    Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in the context of online active learning. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research. Our review aims to provide a comprehensive and up-to-date overview of the field and to highlight directions for future work

    Explain what you see:argumentation-based learning and robotic vision

    Get PDF
    In this thesis, we have introduced new techniques for the problems of open-ended learning, online incremental learning, and explainable learning. These methods have applications in the classification of tabular data, 3D object category recognition, and 3D object parts segmentation. We have utilized argumentation theory and probability theory to develop these methods. The first proposed open-ended online incremental learning approach is Argumentation-Based online incremental Learning (ABL). ABL works with tabular data and can learn with a small number of learning instances using an abstract argumentation framework and bipolar argumentation framework. It has a higher learning speed than state-of-the-art online incremental techniques. However, it has high computational complexity. We have addressed this problem by introducing Accelerated Argumentation-Based Learning (AABL). AABL uses only an abstract argumentation framework and uses two strategies to accelerate the learning process and reduce the complexity. The second proposed open-ended online incremental learning approach is the Local Hierarchical Dirichlet Process (Local-HDP). Local-HDP aims at addressing two problems of open-ended category recognition of 3D objects and segmenting 3D object parts. We have utilized Local-HDP for the task of object part segmentation in combination with AABL to achieve an interpretable model to explain why a certain 3D object belongs to a certain category. The explanations of this model tell a user that a certain object has specific object parts that look like a set of the typical parts of certain categories. Moreover, integrating AABL and Local-HDP leads to a model that can handle a high degree of occlusion

    Object Recognition and Parsing with Weak Supervision

    Get PDF
    Object recognition is a fundamental problem in computer vision and has attracted a lot of research attention, while object parsing is equally important for many computer vision tasks but has been less studied. With the recent development of deep neural networks, computer vision researches have been dominated by deep learning approaches, which require large amount of training data for a specific task in a specific domain. The cost of collecting rare samples and making "hard" labels is forbiddingly high and has limited the development of many important vision studies, including object parsing. This dissertation will focus on object recognition and parsing with weak supervision, which tackles the problem when only a limited amount of data or label are available for training deep neural networks in the target domain. The goal is to design more advanced computer vision models with enhanced data efficiency during training and increased robustness to out-of-distribution samples during test. To achieve this goal, I will introduce several strategies, including unsupervised learning of compositional components in deep neural networks, zero/few-shot learning by preserving useful knowledge acquired in pre-training, weakly supervised learning combined with spatial-temporal information in video data, and learning from 3D computer graphics models and synthetic data. Furthermore, I will discuss new findings in our cognitive science projects and explain how the part-based representations benefit the development of visual analogical reasoning models. I believe this series of works alleviates the data-hungry problem of deep neural networks, and improves computer vision models to behave closer to human intelligence

    Rejection-oriented learning without complete class information

    Get PDF
    Machine Learning is commonly used to support decision-making in numerous, diverse contexts. Its usefulness in this regard is unquestionable: there are complex systems built on the top of machine learning techniques whose descriptive and predictive capabilities go far beyond those of human beings. However, these systems still have limitations, whose analysis enable to estimate their applicability and confidence in various cases. This is interesting considering that abstention from the provision of a response is preferable to make a mistake in doing so. In the context of classification-like tasks, the indication of such inconclusive output is called rejection. The research which culminated in this thesis led to the conception, implementation and evaluation of rejection-oriented learning systems for two distinct tasks: open set recognition and data stream clustering. These system were derived from WiSARD artificial neural network, which had rejection modelling incorporated into its functioning. This text details and discuss such realizations. It also presents experimental results which allow assess the scientific and practical importance of the proposed state-of-the-art methodology.Aprendizado de Máquina é comumente usado para apoiar a tomada de decisão em numerosos e diversos contextos. Sua utilidade neste sentido é inquestionável: existem sistemas complexos baseados em técnicas de aprendizado de máquina cujas capacidades descritivas e preditivas vão muito além das dos seres humanos. Contudo, esses sistemas ainda possuem limitações, cuja análise permite estimar sua aplicabilidade e confiança em vários casos. Isto é interessante considerando que a abstenção da provisão de uma resposta é preferível a cometer um equívoco ao realizar tal ação. No contexto de classificação e tarefas similares, a indicação desse resultado inconclusivo é chamada de rejeição. A pesquisa que culminou nesta tese proporcionou a concepção, implementação e avaliação de sistemas de aprendizado orientados `a rejeição para duas tarefas distintas: reconhecimento em cenário abertos e agrupamento de dados em fluxo contínuo. Estes sistemas foram derivados da rede neural artificial WiSARD, que teve a modelagem de rejeição incorporada a seu funcionamento. Este texto detalha e discute tais realizações. Ele também apresenta resultados experimentais que permitem avaliar a importância científica e prática da metodologia de ponta proposta

    Pre-trained models are not enough: active and lifelong learning is important for long-term visual monitoring of mammals in biodiversity research—Individual identification and attribute prediction with image features from deep neural networks and decoupled decision models applied to elephants and great apes

    Get PDF
    Animal re-identification based on image data, either recorded manually by photographers or automatically with camera traps, is an important task for ecological studies about biodiversity and conservation that can be highly automatized with algorithms from computer vision and machine learning. However, fixed identification models only trained with standard datasets before their application will quickly reach their limits, especially for long-term monitoring with changing environmental conditions, varying visual appearances of individuals over time that differ a lot from those in the training data, and new occurring individuals that have not been observed before. Hence, we believe that active learning with human-in-the-loop and continuous lifelong learning is important to tackle these challenges and to obtain high-performance recognition systems when dealing with huge amounts of additional data that become available during the application. Our general approach with image features from deep neural networks and decoupled decision models can be applied to many different mammalian species and is perfectly suited for continuous improvements of the recognition systems via lifelong learning. In our identification experiments, we consider four different taxa, namely two elephant species: African forest elephants and Asian elephants, as well as two species of great apes: gorillas and chimpanzees. Going beyond classical re-identification, our decoupled approach can also be used for predicting attributes of individuals such as gender or age using classification or regression methods. Although applicable for small datasets of individuals as well, we argue that even better recognition performance will be achieved by improving decision models gradually via lifelong learning to exploit huge datasets and continuous recordings from long-term applications. We highlight that algorithms for deploying lifelong learning in real observational studies exist and are ready for use. Hence, lifelong learning might become a valuable concept that supports practitioners when analyzing large-scale image data during long-term monitoring of mammals

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise
    corecore