5,808 research outputs found

    Fast network configuration in Software Defined Networking

    Get PDF
    Software Defined Networking (SDN) provides a framework to dynamically adjust and re-program the data plane with the use of flow rules. The realization of highly adaptive SDNs with the ability to respond to changing demands or recover after a network failure in a short period of time, hinges on efficient updates of flow rules. We model the time to deploy a set of flow rules by the update time at the bottleneck switch, and formulate the problem of selecting paths to minimize the deployment time under feasibility constraints as a mixed integer linear program (MILP). To reduce the computation time of determining flow rules, we propose efficient heuristics designed to approximate the minimum-deployment-time solution by relaxing the MILP or selecting the paths sequentially. Through extensive simulations we show that our algorithms outperform current, shortest path based solutions by reducing the total network configuration time up to 55% while having similar packet loss, in the considered scenarios. We also demonstrate that in a networked environment with a certain fraction of failed links, our algorithms are able to reduce the average time to reestablish disrupted flows by 40%

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated

    Inner and Outer Rounding of Boolean Operations on Lattice Polygonal Regions

    Get PDF
    Robustness problems due to the substitution of the exact computation on real numbers by the rounded floating point arithmetic are often an obstacle to obtain practical implementation of geometric algorithms. If the adoption of the --exact computation paradigm--[Yap et Dube] gives a satisfactory solution to this kind of problems for purely combinatorial algorithms, this solution does not allow to solve in practice the case of algorithms that cascade the construction of new geometric objects. In this report, we consider the problem of rounding the intersection of two polygonal regions onto the integer lattice with inclusion properties. Namely, given two polygonal regions A and B having their vertices on the integer lattice, the inner and outer rounding modes construct two polygonal regions with integer vertices which respectively is included and contains the true intersection. We also prove interesting results on the Hausdorff distance, the size and the convexity of these polygonal regions

    Pseudo-Separation for Assessment of Structural Vulnerability of a Network

    Full text link
    Based upon the idea that network functionality is impaired if two nodes in a network are sufficiently separated in terms of a given metric, we introduce two combinatorial \emph{pseudocut} problems generalizing the classical min-cut and multi-cut problems. We expect the pseudocut problems will find broad relevance to the study of network reliability. We comprehensively analyze the computational complexity of the pseudocut problems and provide three approximation algorithms for these problems. Motivated by applications in communication networks with strict Quality-of-Service (QoS) requirements, we demonstrate the utility of the pseudocut problems by proposing a targeted vulnerability assessment for the structure of communication networks using QoS metrics; we perform experimental evaluations of our proposed approximation algorithms in this context

    Hardness of Graph Pricing through Generalized Max-Dicut

    Full text link
    The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any ϵ>0\epsilon > 0, there exists δ>0\delta > 0 such that the integrality gap of nδn^{\delta}-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/2 + ϵ\epsilon. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(TT), which has a domain size T+1T + 1 for every T1T \geq 1. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation-preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page
    corecore