19 research outputs found

    Computer theorem proving in math

    Get PDF
    We give an overview of issues surrounding computer-verified theorem proving in the standard pure-mathematical context. This is based on my talk at the PQR conference (Brussels, June 2003)

    Larry Wos - Visions of automated reasoning

    Get PDF
    This paper celebrates the scientific discoveries and the service to the automated reasoning community of Lawrence (Larry) T. Wos, who passed away in August 2020. The narrative covers Larry's most long-lasting ideas about inference rules and search strategies for theorem proving, his work on applications of theorem proving, and a collection of personal memories and anecdotes that let readers appreciate Larry's personality and enthusiasm for automated reasoning

    On Leśniewski’s Characteristica Universalis

    Get PDF
    Leśniewski's systems deviate greatly from standard logic in some basic features. The deviant aspects are rather well known, and often cited among the reasons why Leśniewski's work enjoys little recognition. This paper is an attempt to explain why those aspects should be there at all. Leśniewski built his systems inspired by a dream close to Leibniz's characteristica universalis: a perfect system of deductive theories encoding our knowledge of the world, based on a perfect language. My main claim is that Leśniewski built his characteristica universalis following the conditions of de Jong and Betti's Classical Model of Science (2008) to an astounding degree. While showing this I give an overview of the architecture of Leśniewski's systems and of their fundamental characteristics. I suggest among others that the aesthetic constraints Leśniewski put on axioms and primitive terms have epistemological relevance. © The Author(s) 2008

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    Boundary Algebra: A Simple Notation for Boolean Algebra and the Truth Functors

    Get PDF
    Boundary algebra [BA] is a simpler notation for Spencer-Brown’s (1969) primary algebra [pa], the Boolean algebra 2, and the truth functors. The primary arithmetic [PA] consists of the atoms ‘()’ and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting the presence or absence of () into a PA formula yields a BA formula. The BA axioms are "()()=()" (A1), and "(()) [=?] may be written or erased at will” (A2). Repeated application of these axioms to a PA formula yields a member of B= {(),?} called its simplification. (a) has two intended interpretations: (a) ? a? (Boolean algebra 2), and (a) ? ~a (sentential logic). BA is self-dual: () ? 1 [dually 0] so that B is the carrier for 2, ab ? a?b [a?b], and (a)b [(a(b))] ? a=b, so that ?=() [()=?] follows trivially and B is a poset. The BA basis abc= bca (Dilworth 1938), a(ab)= a(b), and a()=() (Bricken 2002) facilitates clausal reasoning and proof by calculation. BA also simplifies normal forms and Quine’s (1982) truth value analysis. () ? true [false] yields boundary logic.G. Spencer Brown; boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; C.S. Peirce; existential graphs.

    Usuzování s nekonzistentními informacemi

    Get PDF
    Tato dizertační práce studuje extenze čtyřhodnotové Belnapovy-Dunnovy logiky, tzv. superbelnapovské logiky, z pohledu abstraktní algebraické logiky. Popisujeme v ní globální strukturu svazu superbelnapovských logik a ukazu- jeme, že tento svaz lze zcela popsat pomocí tříd konečných grafů splňujících jisté uzávěrové podmínky. Také zde zavádíme teorii tzv. explozivních extenzí a používáme ji k důkazu nových vět o úplnosti pro superbelnapovské logiky. Poté rozvíjeme gentzenovskou teorii důkazů pro tyto logiky a použijeme ji k důkazu věty o interpolaci pro mnoho z těchto logik. Nakonec také studujeme rozšíření Belnapovy-Dunnovy logiky o operátor pravdivosti ∆. Klíčová slova: abstraktní algebraická logika, Belnapova-Dunnova logika, parakonzistentní logika, superbelnapovské logikyThis thesis studies the extensions of the four-valued Belnap-Dunn logic, called super-Belnap logics, from the point of view of abstract algebraic logic. We describe the global structure of the lattice of super-Belnap logics and show that this lattice can be fully described in terms of classes of finite graphs satisfying some closure conditions. We also introduce a theory of so- called explosive extensions and use it to prove new completeness theorems for super-Belnap logics. A Gentzen-style proof theory for these logics is then developed and used to establish interpolation for many of them. Finally, we also study the expansion of the Belnap-Dunn logic by the truth operator ∆. Keywords: abstract algebraic logic, Belnap-Dunn logic, paraconsistent logic, super-Belnap logicsKatedra logikyDepartment of LogicFaculty of ArtsFilozofická fakult
    corecore