7,618 research outputs found

    A polynomial-time algorithm for computing shortest paths of bounded curvature amidst moderate obstacles

    Get PDF
    Article dans revue scientifique avec comité de lecture.International audienceIn this paper, we consider the problem of computing shortest paths of bounded curvature amidst obstacles in the plane. More precisely, given two prescribed initial and final configurations (specifying the location and the direction of travel) and a set of obstacles in the plane, we want to compute a shortest C1C^1 path joining those two configurations, avoiding the obstacles, and with the further constraint that, on each C2C^2 piece, the radius of curvature is at least 1. In this paper, we consider the case of moderate obstacles (as introduced by Agarwal et al.) and present a polynomial-time exact algorithm to solve this problem

    Star Unfolding Convex Polyhedra via Quasigeodesic Loops

    Get PDF
    We extend the notion of star unfolding to be based on a quasigeodesic loop Q rather than on a point. This gives a new general method to unfold the surface of any convex polyhedron P to a simple (non-overlapping), planar polygon: cut along one shortest path from each vertex of P to Q, and cut all but one segment of Q.Comment: 10 pages, 7 figures. v2 improves the description of cut locus, and adds references. v3 improves two figures and their captions. New version v4 offers a completely different proof of non-overlap in the quasigeodesic loop case, and contains several other substantive improvements. This version is 23 pages long, with 15 figure

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer
    • …
    corecore