13,350 research outputs found

    Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

    Get PDF
    Given a rectilinear domain P of h pairwise-disjoint rectilinear obstacles with a total of n vertices in the plane, we study the problem of computing bicriteria rectilinear shortest paths between two points s and t in P. Three types of bicriteria rectilinear paths are considered: minimum-link shortest paths, shortest minimum-link paths, and minimum-cost paths where the cost of a path is a non-decreasing function of both the number of edges and the length of the path. The one-point and two-point path queries are also considered. Algorithms for these problems have been given previously. Our contributions are threefold. First, we find a critical error in all previous algorithms. Second, we correct the error in a not-so-trivial way. Third, we further improve the algorithms so that they are even faster than the previous (incorrect) algorithms when h is relatively small. For example, for computing a minimum-link shortest s-t path, the previous algorithm runs in O(n log^{3/2} n) time while the time of our new algorithm is O(n + h log^{3/2} h)

    Shortest Paths in the Plane with Obstacle Violations

    Get PDF
    We study the problem of finding shortest paths in the plane among h convex obstacles, where the path is allowed to pass through (violate) up to k obstacles, for k <= h. Equivalently, the problem is to find shortest paths that become obstacle-free if k obstacles are removed from the input. Given a fixed source point s, we show how to construct a map, called a shortest k-path map, so that all destinations in the same region of the map have the same combinatorial shortest path passing through at most k obstacles. We prove a tight bound of Theta(kn) on the size of this map, and show that it can be computed in O(k^2 n log n) time, where n is the total number of obstacle vertices

    Computing a rectilinear shortest path amid splinegons in plane

    Full text link
    We reduce the problem of computing a rectilinear shortest path between two given points s and t in the splinegonal domain \calS to the problem of computing a rectilinear shortest path between two points in the polygonal domain. As part of this, we define a polygonal domain \calP from \calS and transform a rectilinear shortest path computed in \calP to a path between s and t amid splinegon obstacles in \calS. When \calS comprises of h pairwise disjoint splinegons with a total of n vertices, excluding the time to compute a rectilinear shortest path amid polygons in \calP, our reduction algorithm takes O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in splinegons, we have devised another algorithm in which the reduction procedure does not rely on the structures used in the algorithm to compute a rectilinear shortest path in polygonal domain. As part of these, we have characterized few of the properties of rectilinear shortest paths amid splinegons which could be of independent interest

    Approximate Euclidean shortest paths in polygonal domains

    Get PDF
    Given a set P\mathcal{P} of hh pairwise disjoint simple polygonal obstacles in R2\mathbb{R}^2 defined with nn vertices, we compute a sketch Ω\Omega of P\mathcal{P} whose size is independent of nn, depending only on hh and the input parameter ϵ\epsilon. We utilize Ω\Omega to compute a (1+ϵ)(1+\epsilon)-approximate geodesic shortest path between the two given points in O(n+h((lgn)+(lgh)1+δ+(1ϵlghϵ)))O(n + h((\lg{n}) + (\lg{h})^{1+\delta} + (\frac{1}{\epsilon}\lg{\frac{h}{\epsilon}}))) time. Here, ϵ\epsilon is a user parameter, and δ\delta is a small positive constant (resulting from the time for triangulating the free space of P\cal P using the algorithm in \cite{journals/ijcga/Bar-YehudaC94}). Moreover, we devise a (2+ϵ)(2+\epsilon)-approximation algorithm to answer two-point Euclidean distance queries for the case of convex polygonal obstacles.Comment: a few updates; accepted to ISAAC 201
    corecore