820 research outputs found

    Motion planning on steep terrain for the tethered axel rover

    Get PDF
    This paper considers the motion planning problem that arises when a tethered robot descends and ascends steep obstacle-strewn terrain. This work is motivated by the Axel tethered robotic rover designed to provide access to extreme extra-planetary terrains. Motion planning for this type of rover is very different from traditional planning problems because the tether geometry under high loading must be considered during the planning process. Furthermore, only round-trip paths that avoid tether entanglement are viable solutions to the problem. We present an algorithm for tethered robot motion planning on steep terrain that reduces the likelihood that the tether will become entangled during descent and ascent of steep slopes. The algorithm builds upon the notion of the shortest homotopic tether path and its associated sleeve. We provide a simple example for purposes of illustration

    Optimal Path Planning in Distinct Topo-Geometric Classes using Neighborhood-augmented Graph and its Application to Path Planning for a Tethered Robot in 3D

    Full text link
    Many robotics applications benefit from being able to compute multiple locally optimal paths in a given configuration space. Examples include path planning for of tethered robots with cable-length constraints, systems involving cables, multi-robot topological exploration & coverage, and, congestion reduction for mobile robots navigation without inter-robot coordination. Existing paradigm is to use topological path planning methods that can provide optimal paths from distinct topological classes available in the underlying configuration space. However, these methods usually require non-trivial and non-universal geometrical constructions, which are prohibitively complex or expensive in 3 or higher dimensional configuration spaces with complex topology. Furthermore, topological methods are unable to distinguish between locally optimal paths that belong to the same topological class but are distinct because of genus-zero obstacles in 3D or due to high-cost or high-curvature regions. In this paper we propose an universal and generalized approach to multi-class path planning using the concept of a novel neighborhood-augmented graph, search-based planning in which can compute paths in distinct topo-geometric classes. This approach can find desired number of locally optimal paths in a wider variety of configuration spaces without requiring any complex pre-processing or geometric constructions. Unlike the existing topological methods, resulting optimal paths are not restricted to distinct topological classes, thus making the algorithm applicable to many other problems where locally optimal and geometrically distinct paths are of interest. For the demonstration of an application of the proposed approach, we implement our algorithm to planning for shortest traversible paths for a tethered robot with cable-length constraint navigating in 3D and validate it in simulations & experiments.Comment: 18 pages, 17 figure

    Tethered Motion Planning for a Rappelling Robot

    Get PDF
    The Jet Propulsion Laboratory and Caltech developed the Axel rover to investigate and demonstrate the potential for tethered extreme terrain mobility, such as allowing access to science targets on the steep crater walls of other planets. Tether management is a key issue for Axel and other rappelling rovers. Avoiding tether entanglement constrains the robot's valid motions to the set of outgoing and returning path pairs that are homotopic to each other. In the case of a robot on a steep slope, a motion planner must additionally ensure that this ascent-descent path pair is feasible, based on the climbing forces provided by the tether. This feasibility check relies on the taut tether configuration, which is the shortest path in the homotopy class of the ascent-descent path pair. This dissertation presents a novel algorithm for tethered motion planning in extreme terrains, produced by combining shortest-homotopic-path algorithms from the topology and computational geometry communities with traditional graph search methods. The resulting tethered motion planning algorithm searches for this shortest path, checks for feasibility, and then generates waypoints for an ascent-descent path pair in the same homotopy class. I demonstrate the implementation of this algorithm on a Martian crater data set such as might be seen for a typical mission. By searching only for the shortest path, and ordering that search according to a heuristic, this algorithm proceeds more efficiently than previous tethered path-planning algorithms for extreme terrain. Frictional tether-terrain interaction may cause dangerously intermittent and unstable tether obstacles, which can be categorized based on their stability. Force-balance equations from the rope physics literature provide a set of tether and terrain conditions for static equilibrium, which can be used to determine if a given tether configuration will stick to a given surface based on tether tension. By estimating the tension of Axel's tether when driving, I divide potential tether tension obstacles into the following categories: acting as obstacles, acting as non-obstacles, and hazardous intermittent obstacles where it is uncertain whether the tether would slip or stick under normal driving tension variance. This dissertation describes how to modify the obstacle map as the categorization of obstacles fluctuates, and how to alter a motion plan around the dangerous tether friction obstacles. Together, these algorithms and methods form a framework for tethered motion planning on extreme terrain.</p

    Exploration of Unknown Environments Using a Tethered Mobile Robot

    Get PDF
    Exploration with mobile robots is a well known field of research, but current solutions cannot be directly applied for tethered robots. In some applications, tethers may be very important to provide power or allow communication with the robot. This thesis presents an exploration algorithm that guarantees complete exploration of arbitrary environments within the length constraint of the tether, while keeping the tether tangle-free at all times. While a generalized algorithm that can be used with several exploration strategies is also proposed, the presented implementation uses a modified frontier-based exploration approach, where the robot chooses its next goal in the frontier between explored and unexplored regions of the environment. The main modification from standard frontier-based method is the use of a cost function to sort multiple goals in one iteration and pick the cheapest one to go to, minimizing global path length in the process. The cost is calculated in terms of path length with tether constraints accounted for. The basic idea of the algorithm is to keep an estimate of the tether configuration, including length and homotopy, and decide the next robot path based on the length difference between the current tether length and the shortest tether length at the next goal position. The length difference is then used to determine whether it is safe for the robot to take the shortest path to the goal, or whether the robot has to take a different path to the goal in the way that would put the tether back into the most optimal configuration. The maximum length difference that would still guarantee global tangle-free paths has been shown to be the circumference of the smallest expected obstacle in the environment. The presented algorithm is provable correct and was tested and evaluated using both simulations and real-world experiments. Navigation of a planar robot is done with the aid of a Simultaneous Localization and Mapping (SLAM) system, with the data being provided by the on-board LiDAR scanner. The results from conducted experiments have demonstrated that the proposed algorithm results in the total path length increase of anywhere from 30% up to to 80% compared to untethered frontier-based approach, with the exact percentage increase dependent on the complexity of the environment. It is also approximately 6 times shorter than the total path length in a conservative approach of backtracking to the base to avoid tangling

    Tangle-Free Exploration with a Tethered Mobile Robot

    Get PDF
    Exploration and remote sensing with mobile robots is a well known field of research, but current solutions cannot be directly applied for tethered robots. In some applications, tethers may be very important to provide power or allow communication with the robot. This paper presents an exploration algorithm that guarantees complete exploration of arbitrary environments within the length constraint of the tether, while keeping the tether tangle-free at all times. While we also propose a generalized algorithm that can be used with several exploration strategies, our implementation uses a modified frontier-based exploration approach, where the robot chooses its next goal in the frontier between explored and unexplored regions of the environment. The basic idea of the algorithm is to keep an estimate of the tether configuration, including length and homotopy, and decide the next robot path based on the difference between the current tether length and the shortest tether length at the next goal position. Our algorithm is provable correct and was tested and evaluated using both simulations and real-world experiments

    NEPTUNE: Non-Entangling Planning for Multiple Tethered Unmanned Vehicles

    Full text link
    Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.Comment: Accepted for publication in IEEE Transaction on Robotic

    Axel: A Minimalist Tethered Rover for Exploration of Extreme Planetary Terrains

    Get PDF
    Recent scientific findings suggest that some of the most interesting sites for future exploration of planetary surfaces lie in terrains that are currently inaccessible to conventional robotic rovers. To provide robust and flexible access to these terrains, we have been developing Axel, the robotic rover. Axel is a lightweight two-wheeled vehicle that can access steep terrains and negotiate relatively large obstacles because of its actively managed tether and novel wheel design. This article reviews the Axel system and focuses on those system components that affect Axel's steep terrain mobility. Experimental demonstrations of Axel on sloped and rocky terrains are presented
    • …
    corecore