26 research outputs found

    Range Shortest Unique Substring queries

    Get PDF
    Let be a string of length n and be the substring of starting at position i and ending at position j. A substring of is a repeat if it occurs more than once in; otherwise, it is a unique substring of. Repeats and unique substrings are of great interest in computational biology and in information retrieval. Given string as input, the Shortest Unique Substring problem is to find a shortest substring of that does not occur elsewhere in. In this paper, we introduce the range variant of this problem, which we call the Range Shortest Unique Substring problem. The task is to construct a data structure over answering the following type of online queries efficiently. Given a range, return a shortest substring of with exactly one occurrence in. We present an -word data structure with query time, where is the word size. Our construction is based on a non-trivial reduction allowing us to apply a recently introduced optimal geometric data structure [Chan et al. ICALP 2018]

    Longest property-preserved common factor

    Get PDF
    In this paper we introduce a new family of string processing problems. We are given two or more strings and we are asked to compute a factor common to all strings that preserves a specific property and has maximal length. Here we consider two fundamental string properties: square-free factors and periodic factors under two different settings, one per property. In the first setting, we are given a string x and we are asked to construct a data structure over x answering the following type of on-line queries: given string y, find a longest square-free factor common to x and y. In the second setting, we are given k strings and an integer 1 < k’ ≤ k and we are asked to find a longest periodic factor common to at least k’ strings. We present linear-time solutions for both settings. We anticipate that our paradigm can be extended to other string properties

    Longest Property-Preserved Common Factor

    Get PDF
    International audienceIn this paper we introduce a new family of string processing problems. We are given two or more strings and we are asked to compute a factor common to all strings that preserves a specific property and has maximal length. Here we consider three fundamental string properties: square-free factors, periodic factors, and palindromic factors under three different settings, one per property. In the first setting, we are given a string x and we are asked to construct a data structure over x answering the following type of on-line queries: given string y, find a longest square-free factor common to x and y. In the second setting, we are given k strings and an integer 1 < k ≤ k and we are asked to find a longest periodic factor common to at least k strings. In the third setting, we are given two strings and we are asked to find a longest palindromic factor common to the two strings. We present linear-time solutions for all settings. We anticipate that our paradigm can be extended to other string properties or settings

    Efficient data structures for range shortest unique substring queries†

    Get PDF
    Let T[1, n] be a string of length n and T[i, j] be the substring of T starting at position i and ending at position j. A substring T[i, j] of T is a repeat if it occurs more than once in T; otherwise, it is a unique substring of T. Repeats and unique substrings are of great interest in computational biology and information retrieval. Given string T as input, the Shortest Unique Substring problem is to find a shortest substring of T that does not occur elsewhere in T. In this paper, we introduce the range variant of this problem, which we call the Range Shortest Unique Substring problem. The task is to construct a data structure over T answering the following type of online queries efficiently. Given a range [α, β], return a shortest substring T[i, j] of T with exactly one occurrence in [α, β]. We present an O(n log n)-word data structure with O(logw n) query time, where w = Ω(log n) is the word size. Our construction is based on a non-trivial reduction allowing for us to apply a recently introduced optimal geometric data structure [Chan et al., ICALP 2018]. Additionally, we present an O(n)-word data structure with O(√ n logɛ n) query time, where ɛ > 0 is an arbitrarily small constant. The latter data structure relies heavily on another geometric data structure [Nekrich and Navarro, SWAT 2012]

    28th Annual Symposium on Combinatorial Pattern Matching : CPM 2017, July 4-6, 2017, Warsaw, Poland

    Get PDF
    Peer reviewe

    Palindromic k-Factorization in Pure Linear Time

    Get PDF
    Given a string s of length n over a general alphabet and an integer k, the problem is to decide whether s is a concatenation of k nonempty palindromes. Two previously known solutions for this problem work in time O(kn) and O(nlog n) respectively. Here we settle the complexity of this problem in the word-RAM model, presenting an O(n)-time online deciding algorithm. The algorithm simultaneously finds the minimum odd number of factors and the minimum even number of factors in a factorization of a string into nonempty palindromes. We also demonstrate how to get an explicit factorization of s into k palindromes with an O(n)-time offline postprocessing

    Efficient Data Structures for Text Processing Applications

    Get PDF
    This thesis is devoted to designing and analyzing efficient text indexing data structures and associated algorithms for processing text data. The general problem is to preprocess a given text or a collection of texts into a space-efficient index to quickly answer various queries on this data. Basic queries such as counting/reporting a given pattern\u27s occurrences as substrings of the original text are useful in modeling critical bioinformatics applications. This line of research has witnessed many breakthroughs, such as the suffix trees, suffix arrays, FM-index, etc. In this work, we revisit the following problems: 1. The Heaviest Induced Ancestors problem 2. Range Longest Common Prefix problem 3. Range Shortest Unique Substrings problem 4. Non-Overlapping Indexing problem For the first problem, we present two new space-time trade-offs that improve the space, query time, or both of the existing solutions by roughly a logarithmic factor. For the second problem, our solution takes linear space, which improves the previous result by a logarithmic factor. The techniques developed are then extended to obtain an efficient solution for our third problem, which is newly formulated. Finally, we present a new framework that yields efficient solutions for the last problem in both cache-aware and cache-oblivious models
    corecore