10,468 research outputs found

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    Optimized Data Representation for Interactive Multiview Navigation

    Get PDF
    In contrary to traditional media streaming services where a unique media content is delivered to different users, interactive multiview navigation applications enable users to choose their own viewpoints and freely navigate in a 3-D scene. The interactivity brings new challenges in addition to the classical rate-distortion trade-off, which considers only the compression performance and viewing quality. On the one hand, interactivity necessitates sufficient viewpoints for richer navigation; on the other hand, it requires to provide low bandwidth and delay costs for smooth navigation during view transitions. In this paper, we formally describe the novel trade-offs posed by the navigation interactivity and classical rate-distortion criterion. Based on an original formulation, we look for the optimal design of the data representation by introducing novel rate and distortion models and practical solving algorithms. Experiments show that the proposed data representation method outperforms the baseline solution by providing lower resource consumptions and higher visual quality in all navigation configurations, which certainly confirms the potential of the proposed data representation in practical interactive navigation systems

    Fine-Grained Complexity Analysis of Two Classic TSP Variants

    Get PDF
    We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of nn points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in O(n2)O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in O(nlog⁥2n)O(n \log^2 n) time and its bottleneck version in O(nlog⁥3n)O(n \log^3 n) time. Our second set of results concerns the popular kk-OPT heuristic for TSP in the graph setting. More precisely, we study the kk-OPT decision problem, which asks whether a given tour can be improved by a kk-OPT move that replaces kk edges in the tour by kk new edges. A simple algorithm solves kk-OPT in O(nk)O(n^k) time for fixed kk. For 2-OPT, this is easily seen to be optimal. For k=3k=3 we prove that an algorithm with a runtime of the form O~(n3−ϔ)\tilde{O}(n^{3-\epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for k=2,3k=2,3 may suggest that the actual time complexity of kk-OPT is Θ(nk)\Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best kk-move in O(n⌊2k/3⌋+1)O(n^{\lfloor 2k/3 \rfloor + 1}) time for fixed k≄3k \geq 3. This implies that 4-OPT can be solved in O(n3)O(n^3) time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for k=2k=2 in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016

    Grid Orientations, (d,d + 2)-Polytopes, and Arrangements of Pseudolines

    Get PDF
    We investigate the combinatorial structure of linear programs on simple d-polytopes with d + 2 facets. These can be encoded by admissible grid orientations. Admissible grid orientations are also obtained through orientation properties of a planar point configuration or by the dual line arrangement. The point configuration and the polytope corresponding to the same grid are related through an extended Gale transform. The class of admissible grid orientations is shown to contain nonrealizable examples, i.e., there are admissible grid orientations which cannot be obtained from a polytope or a point configuration. It is shown, however, that every admissible grid orientation is induced by an arrangement of pseudolines. This later result is used to prove several nontrivial facts about admissible grid orientation
    • 

    corecore