96 research outputs found

    A motion planner for nonholonomic mobile robots

    Get PDF
    This paper considers the problem of motion planning for a car-like robot (i.e., a mobile robot with a nonholonomic constraint whose turning radius is lower-bounded). We present a fast and exact planner for our mobile robot model, based upon recursive subdivision of a collision-free path generated by a lower-level geometric planner that ignores the motion constraints. The resultant trajectory is optimized to give a path that is of near-minimal length in its homotopy class. Our claims of high speed are supported by experimental results for implementations that assume a robot moving amid polygonal obstacles. The completeness and the complexity of the algorithm are proven using an appropriate metric in the configuration space R^2 x S^1 of the robot. This metric is defined by using the length of the shortest paths in the absence of obstacles as the distance between two configurations. We prove that the new induced topology and the classical one are the same. Although we concentrate upon the car-like robot, the generalization of these techniques leads to new theoretical issues involving sub-Riemannian geometry and to practical results for nonholonomic motion planning

    Mobile robotic network deployment for intruder detection and tracking

    Get PDF
    This thesis investigates the problem of intruder detection and tracking using mobile robotic networks. In the first part of the thesis, we consider the problem of seeking an electromagnetic source using a team of robots that measure the local intensity of the emitted signal. We propose a planner for a team of robots based on Particle Swarm Optimization (PSO) which is a population based stochastic optimization technique. An equivalence is established between particles generated in the traditional PSO technique, and the mobile agents in the swarm. Since the positions of the robots are updated using the PSO algorithm, modifications are required to implement the PSO algorithm on real robots to incorporate collision avoidance strategies. The modifications necessary to implement PSO on mobile robots, and strategies to adapt to real environments are presented in this thesis. Our results are also validated on an experimental testbed. In the second part, we present a game theoretic framework for visibility-based target tracking in multi-robot teams. A team of observers (pursuers) and a team of targets (evaders) are present in an environment with obstacles. The objective of the team of observers is to track the team of targets for the maximum possible time. While the objective of the team of targets is to escape (break line-of-sight) in the minimum time. We decompose the problem into two layers. At the upper level, each pursuer is allocated to an evader through a minimum cost allocation strategy based on the risk of each evader, thereby, decomposing the agents into multiple single pursuer-single evader pairs. Two decentralized allocation strategies are proposed and implemented in this thesis. At the lower level, each pursuer computes its strategy based on the results of the single pursuer-single evader target-tracking problem. We initially address this problem in an environment containing a semi-infinite obstacle with one corner. The pursuer\u27s optimal tracking strategy is obtained regardless of the evader\u27s strategy using techniques from optimal control theory and differential games. Next, we extend the result to an environment containing multiple polygonal obstacles. We construct a pursuit field to provide a guiding vector for the pursuer which is a weighted sum of several component vectors. The performance of different combinations of component vectors is investigated. Finally, we extend our work to address the case when the obstacles are not polygonal, and the observers have constraints in motion

    A motion planner for nonholonomic mobile robots

    Get PDF
    This paper considers the problem of motion planning for a car-like robot (i.e., a mobile robot with a nonholonomic constraint whose turning radius is lower-bounded). We present a fast and exact planner for our mobile robot model, based upon recursive subdivision of a collision-free path generated by a lower-level geometric planner that ignores the motion constraints. The resultant trajectory is optimized to give a path that is of near-minimal length in its homotopy class. Our claims of high speed are supported by experimental results for implementations that assume a robot moving amid polygonal obstacles. The completeness and the complexity of the algorithm are proven using an appropriate metric in the configuration space R^2 x S^1 of the robot. This metric is defined by using the length of the shortest paths in the absence of obstacles as the distance between two configurations. We prove that the new induced topology and the classical one are the same. Although we concentrate upon the car-like robot, the generalization of these techniques leads to new theoretical issues involving sub-Riemannian geometry and to practical results for nonholonomic motion planning

    Workspaces of continuous robotic manipulators

    Get PDF
    In this thesis simple models of two- and threedimensional continuous robotic manipulators are presented. As a first step towards the control of such manipulators characterizations of their workspaces are determined. In order to describe the boundary of the workspaces we apply optimal control techniques. In the twodimensional case the equations investigated are the same as the equations of motion in Dubins' problem. First, the known results of Dubins' problem are extended by the solution of Dubins' problem for free terminal direction. Then these facts are applied in the solution of the optimal control problem connected to the determination of the workspaces. The workspaces for free and prescribed terminal orientation are presented for various upper bounds of the absolute value of the curvature. The threedimensional case is much more complicated since it affords at least two control inputs and more knowledge on differential geometry as well. Unfortunately, the optimal control problem cannot be completely solved. Nevertheless, many facts are given and under further assumptions the workspaces can be presented

    Shortest Dubins Path to a Circle

    Full text link
    The Dubins path problem had enormous applications in path planning for autonomous vehicles. In this paper, we consider a generalization of the Dubins path planning problem, which is to find a shortest Dubins path that starts from a given initial position and heading, and ends on a given target circle with the heading in the tangential direction. This problem has direct applications in Dubins neighborhood traveling salesman problem, obstacle avoidance Dubins path planning problem etc. We characterize the length of the four CSC paths as a function of angular position on the target circle, and derive the conditions which to find the shortest Dubins path to the target circle
    corecore