1,573 research outputs found

    Shortest, Fastest, and Foremost Broadcast in Dynamic Networks

    Full text link
    Highly dynamic networks rarely offer end-to-end connectivity at a given time. Yet, connectivity in these networks can be established over time and space, based on temporal analogues of multi-hop paths (also called {\em journeys}). Attempting to optimize the selection of the journeys in these networks naturally leads to the study of three cases: shortest (minimum hop), fastest (minimum duration), and foremost (earliest arrival) journeys. Efficient centralized algorithms exists to compute all cases, when the full knowledge of the network evolution is given. In this paper, we study the {\em distributed} counterparts of these problems, i.e. shortest, fastest, and foremost broadcast with termination detection (TDB), with minimal knowledge on the topology. We show that the feasibility of each of these problems requires distinct features on the evolution, through identifying three classes of dynamic graphs wherein the problems become gradually feasible: graphs in which the re-appearance of edges is {\em recurrent} (class R), {\em bounded-recurrent} (B), or {\em periodic} (P), together with specific knowledge that are respectively nn (the number of nodes), Δ\Delta (a bound on the recurrence time), and pp (the period). In these classes it is not required that all pairs of nodes get in contact -- only that the overall {\em footprint} of the graph is connected over time. Our results, together with the strict inclusion between PP, BB, and RR, implies a feasibility order among the three variants of the problem, i.e. TDB[foremost] requires weaker assumptions on the topology dynamics than TDB[shortest], which itself requires less than TDB[fastest]. Reversely, these differences in feasibility imply that the computational powers of RnR_n, BΔB_\Delta, and PpP_p also form a strict hierarchy

    Shortest, Fastest, and Foremost Broadcast in Dynamic Networks *

    Get PDF
    Highly dynamic networks rarely offer end-to-end connectivity at a given time. Connectivity in these networks can be established over time and space, based on temporal analogues of multi-hop paths (also called journeys). In a seminal work, Our results, together with the strict inclusion between P, B, and R, implies a feasibility order among the three variants of the problem, i.e. TDB[f oremost] requires weaker assumptions on the topology dynamics than TDB [shortest], which itself requires less than TDB[f astest]. Reversely, these differences in feasibility imply that the computational powers of Rn, B ∆ , and Pp also form a strict hierarchy

    Time-Varying Graphs and Dynamic Networks

    Full text link
    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts are components of a larger formal description of this universe. The main contribution of this paper is to integrate the vast collection of concepts, formalisms, and results found in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. Based on this definitional work, employing both existing results and original observations, we present a hierarchical classification of TVGs; each class corresponds to a significant property examined in the distributed computing literature. We then examine how TVGs can be used to study the evolution of network properties, and propose different techniques, depending on whether the indicators for these properties are a-temporal (as in the majority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in TVGs.Comment: A short version appeared in ADHOC-NOW'11. This version is to be published in Internation Journal of Parallel, Emergent and Distributed System

    DMVP: Foremost Waypoint Coverage of Time-Varying Graphs

    Full text link
    We consider the Dynamic Map Visitation Problem (DMVP), in which a team of agents must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during the agents' navigation. We apply recent formulations of time-varying graphs (TVGs) to DMVP, shedding new light on the computational hierarchy R⊃B⊃P\mathcal{R} \supset \mathcal{B} \supset \mathcal{P} of TVG classes by analyzing them in the context of graph navigation. We provide hardness results for all three classes, and for several restricted topologies, we show a separation between the classes by showing severe inapproximability in R\mathcal{R}, limited approximability in B\mathcal{B}, and tractability in P\mathcal{P}. We also give topologies in which DMVP in R\mathcal{R} is fixed parameter tractable, which may serve as a first step toward fully characterizing the features that make DMVP difficult.Comment: 24 pages. Full version of paper from Proceedings of WG 2014, LNCS, Springer-Verla

    The Next 700 Impossibility Results in Time-Varying Graphs

    Get PDF
    We address highly dynamic distributed systems modeled by time-varying graphs (TVGs). We interest in proof of impossibility results that often use informal arguments about convergence. First, we provide a distance among TVGs to define correctly the convergence of TVG sequences. Next, we provide a general framework that formally proves the convergence of the sequence of executions of any deterministic algorithm over TVGs of any convergent sequence of TVGs. Finally, we illustrate the relevance of the above result by proving that no deterministic algorithm exists to compute the underlying graph of any connected-over-time TVG, i.e., any TVG of the weakest class of long-lived TVGs
    • …
    corecore