142 research outputs found

    Shorter Labeling Schemes for Planar Graphs

    Get PDF
    An \emph{adjacency labeling scheme} for a given class of graphs is an algorithm that for every graph GG from the class, assigns bit strings (labels) to vertices of GG so that for any two vertices u,vu,v, whether uu and vv are adjacent can be determined by a fixed procedure that examines only their labels. It is known that planar graphs with nn vertices admit a labeling scheme with labels of bit length (2+o(1))logn(2+o(1))\log{n}. In this work we improve this bound by designing a labeling scheme with labels of bit length (43+o(1))logn(\frac{4}{3}+o(1))\log{n}. In graph-theoretical terms, this implies an explicit construction of a graph on n4/3+o(1)n^{4/3+o(1)} vertices that contains all planar graphs on nn vertices as induced subgraphs, improving the previous best upper bound of n2+o(1)n^{2+o(1)}. Our scheme generalizes to graphs of bounded Euler genus with the same label length up to a second-order term. All the labels of the input graph can be computed in polynomial time, while adjacency can be decided from the labels in constant time

    Dynamic and Multi-functional Labeling Schemes

    Full text link
    We investigate labeling schemes supporting adjacency, ancestry, sibling, and connectivity queries in forests. In the course of more than 20 years, the existence of logn+O(loglog)\log n + O(\log \log) labeling schemes supporting each of these functions was proven, with the most recent being ancestry [Fraigniaud and Korman, STOC '10]. Several multi-functional labeling schemes also enjoy lower or upper bounds of logn+Ω(loglogn)\log n + \Omega(\log \log n) or logn+O(loglogn)\log n + O(\log \log n) respectively. Notably an upper bound of logn+5loglogn\log n + 5\log \log n for adjacency+siblings and a lower bound of logn+loglogn\log n + \log \log n for each of the functions siblings, ancestry, and connectivity [Alstrup et al., SODA '03]. We improve the constants hidden in the OO-notation. In particular we show a logn+2loglogn\log n + 2\log \log n lower bound for connectivity+ancestry and connectivity+siblings, as well as an upper bound of logn+3loglogn+O(logloglogn)\log n + 3\log \log n + O(\log \log \log n) for connectivity+adjacency+siblings by altering existing methods. In the context of dynamic labeling schemes it is known that ancestry requires Ω(n)\Omega(n) bits [Cohen, et al. PODS '02]. In contrast, we show upper and lower bounds on the label size for adjacency, siblings, and connectivity of 2logn2\log n bits, and 3logn3 \log n to support all three functions. There exist efficient adjacency labeling schemes for planar, bounded treewidth, bounded arboricity and interval graphs. In a dynamic setting, we show a lower bound of Ω(n)\Omega(n) for each of those families.Comment: 17 pages, 5 figure

    Graph product structure for non-minor-closed classes

    Full text link
    Dujmovi\'c et al. (FOCS 2019) recently proved that every planar graph is a subgraph of the strong product of a graph of bounded treewidth and a path. Analogous results were obtained for graphs of bounded Euler genus or apex-minor-free graphs. These tools have been used to solve longstanding problems on queue layouts, non-repetitive colouring, pp-centered colouring, and adjacency labelling. This paper proves analogous product structure theorems for various non-minor-closed classes. One noteable example is kk-planar graphs (those with a drawing in the plane in which each edge is involved in at most kk crossings). We prove that every kk-planar graph is a subgraph of the strong product of a graph of treewidth O(k5)O(k^5) and a path. This is the first result of this type for a non-minor-closed class of graphs. It implies, amongst other results, that kk-planar graphs have non-repetitive chromatic number upper-bounded by a function of kk. All these results generalise for drawings of graphs on arbitrary surfaces. In fact, we work in a much more general setting based on so-called shortcut systems that are of independent interest. This leads to analogous results for map graphs, string graphs, graph powers, and nearest neighbour graphs.Comment: v2 Cosmetic improvements and a corrected bound for (layered-)(tree)width in Theorems 2, 9, 11, and Corollaries 1, 3, 4, 6, 12. v3 Complete restructur

    Notes on Graph Product Structure Theory

    Full text link
    It was recently proved that every planar graph is a subgraph of the strong product of a path and a graph with bounded treewidth. This paper surveys generalisations of this result for graphs on surfaces, minor-closed classes, various non-minor-closed classes, and graph classes with polynomial growth. We then explore how graph product structure might be applicable to more broadly defined graph classes. In particular, we characterise when a graph class defined by a cartesian or strong product has bounded or polynomial expansion. We then explore graph product structure theorems for various geometrically defined graph classes, and present several open problems.Comment: 19 pages, 0 figure

    Parameterized Approximation Algorithms for Bidirected Steiner Network Problems

    Get PDF
    The Directed Steiner Network (DSN) problem takes as input a directed edge-weighted graph G=(V,E)G=(V,E) and a set DV×V\mathcal{D}\subseteq V\times V of kk demand pairs. The aim is to compute the cheapest network NGN\subseteq G for which there is an sts\to t path for each (s,t)D(s,t)\in\mathcal{D}. It is known that this problem is notoriously hard as there is no k1/4o(1)k^{1/4-o(1)}-approximation algorithm under Gap-ETH, even when parametrizing the runtime by kk [Dinur & Manurangsi, ITCS 2018]. In light of this, we systematically study several special cases of DSN and determine their parameterized approximability for the parameter kk. For the bi-DSNPlanar_\text{Planar} problem, the aim is to compute a planar optimum solution NGN\subseteq G in a bidirected graph GG, i.e., for every edge uvuv of GG the reverse edge vuvu exists and has the same weight. This problem is a generalization of several well-studied special cases. Our main result is that this problem admits a parameterized approximation scheme (PAS) for kk. We also prove that our result is tight in the sense that (a) the runtime of our PAS cannot be significantly improved, and (b) it is unlikely that a PAS exists for any generalization of bi-DSNPlanar_\text{Planar}, unless FPT=W[1]. One important special case of DSN is the Strongly Connected Steiner Subgraph (SCSS) problem, for which the solution network NGN\subseteq G needs to strongly connect a given set of kk terminals. It has been observed before that for SCSS a parameterized 22-approximation exists when parameterized by kk [Chitnis et al., IPEC 2013]. We give a tight inapproximability result by showing that for kk no parameterized (2ε)(2-\varepsilon)-approximation algorithm exists under Gap-ETH. Additionally we show that when restricting the input of SCSS to bidirected graphs, the problem remains NP-hard but becomes FPT for kk
    corecore