1,716 research outputs found

    Codes for protection from synchronization loss and additive errors

    Get PDF
    Codes for protection from synchronization loss and additive error

    An investigation of error correcting techniques for OMV data

    Get PDF
    Papers on the following topics are presented: considerations of testing the Orbital Maneuvering Vehicle (OMV) system with CLASS; OMV CLASS test results (first go around); equivalent system gain available from R-S encoding versus a desire to lower the power amplifier from 25 watts to 20 watts for OMV; command word acceptance/rejection rates for OMV; a memo concerning energy-to-noise ratio for the Viterbi-BSC Channel and the impact of Manchester coding loss; and an investigation of error correcting techniques for OMV and Advanced X-ray Astrophysics Facility (AXAF)

    Error control for reliable digital data transmission and storage systems

    Get PDF
    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code

    Coding for reliable satellite communications

    Get PDF
    This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks

    Book Review

    Get PDF
    A Scholarly Review of “Error Control for Network-On-Chip Links” (Authors: Bo Fu and Paul Ampadu, 2012)Fu, B.; and Ampadu, P. 2012. Error Control for Network-On-Chip Links.Springer Science+Business Media, LLC, New York, NY, USA.Available: <http://dx.doi.org/10.1007/978-1-4419-9313-7>

    Augmented burst-error correction for UNICON laser memory

    Get PDF
    A single-burst-error correction system is described for data stored in the UNICON laser memory. In the proposed system, a long fire code with code length n greater than 16,768 bits was used as an outer code to augment an existing inner shorter fire code for burst error corrections. The inner fire code is a (80,64) code shortened from the (630,614) code, and it is used to correct a single-burst-error on a per-word basis with burst length b less than or equal to 6. The outer code, with b less than or equal to 12, would be used to correct a single-burst-error on a per-page basis, where a page consists of 512 32-bit words. In the proposed system, the encoding and error detection processes are implemented by hardware. A minicomputer, currently used as a UNICON memory management processor, is used on a time-demanding basis for error correction. Based upon existing error statistics, this combination of an inner code and an outer code would enable the UNICON system to obtain a very low error rate in spite of flaws affecting the recorded data

    Phased burst error-correcting array codes

    Get PDF
    Various aspects of single-phased burst-error-correcting array codes are explored. These codes are composed of two-dimensional arrays with row and column parities with a diagonally cyclic readout order; they are capable of correcting a single burst error along one diagonal. Optimal codeword sizes are found to have dimensions n1Ă—n2 such that n2 is the smallest prime number larger than n1. These codes are capable of reaching the Singleton bound. A new type of error, approximate errors, is defined; in q-ary applications, these errors cause data to be slightly corrupted and therefore still close to the true data level. Phased burst array codes can be tailored to correct these codes with even higher rates than befor
    • …
    corecore