18 research outputs found

    Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review

    Get PDF
    Modern hyperspectral imaging systems produce huge datasets potentially conveying a great abundance of information; such a resource, however, poses many challenges in the analysis and interpretation of these data. Deep learning approaches certainly offer a great variety of opportunities for solving classical imaging tasks and also for approaching new stimulating problems in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where hyperspectral technology was born and has mostly developed, but it is perhaps even more true in the multitude of current and evolving application sectors that involve these imaging technologies. The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields other than Remote Sensing are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Temporal Deep Learning Approach to Bedfast and Floating Thermokarst Lake Ice Mapping using SAR imagery: Old Crow Flats, Yukon, Canada

    Get PDF
    Lake ice is a fundamental part of the freshwater processes in cold regions and a sensitive indicator of climate change. As such, in light of the recent climate warming, monitoring of lake ice in arctic and sub-arctic regions is becoming increasingly important. Many shallow arctic lakes and ponds of thermokarst origin freeze to bed in the winter months maintaining the underlying permafrost in its frozen state. However, as air temperatures rise and precipitation increases, less lakes are expected to develop bedfast ice. In fact, a consistent decrease in maximum ice thickness has been observed over the past decades. Synthetic aperture radar (SAR) offers a unique opportunity to monitor lake ice regimes remotely. Taking advantage of the growing temporal resolution of microwave remote sensing, we proposed applying a temporal deep learning approach to lake ice regime mapping. We employed a combination of Sentinel 1, ERS 1/2, and RADARSAT 1 SAR imagery for the Old Crow Flats (OCF), Yukon, Canada to create an extensive annotated dataset of SAR time-series labeled as either bedfast ice, foating ice, or land, used to train a temporal convolutional neural network (TempCNN). The trained TempCNN, in turn, allowed to automatically map lake ice regimes over a 29-year period (1993-2021). The classi ed maps aligned well with the available fi eld measurements and Canadian Lake Ice Model (CLIMo) simulated ice thickness. Reaching a mean overall classi cation accuracy of 95.05%, the temporal deep learning approach was found promising for automated lake ice regime classi cation. Change detection tools were utilized to determine lake ice regime changes in the OCF over the past 29 years. In the view of signi cant annual variability, no consistent transition towards more foating lake ice was observed. On the contrary, the overall change indicated an extensive transition to bedfast ice caused by a growing number of catastrophic drainages within the examined time period brought on by climate warming and thermokarst processes
    corecore