979 research outputs found

    Model Fusion to Enhance the Clinical Acceptability of Long-Term Glucose Predictions

    Full text link
    This paper presents the Derivatives Combination Predictor (DCP), a novel model fusion algorithm for making long-term glucose predictions for diabetic people. First, using the history of glucose predictions made by several models, the future glucose variation at a given horizon is predicted. Then, by accumulating the past predicted variations starting from a known glucose value, the fused glucose prediction is computed. A new loss function is introduced to make the DCP model learn to react faster to changes in glucose variations. The algorithm has been tested on 10 \textit{in-silico} type-1 diabetic children from the T1DMS software. Three initial predictors have been used: a Gaussian process regressor, a feed-forward neural network and an extreme learning machine model. The DCP and two other fusion algorithms have been evaluated at a prediction horizon of 120 minutes with the root-mean-squared error of the prediction, the root-mean-squared error of the predicted variation, and the continuous glucose-error grid analysis. By making a successful trade-off between prediction accuracy and predicted-variation accuracy, the DCP, alongside with its specifically designed loss function, improves the clinical acceptability of the predictions, and therefore the safety of the model for diabetic people

    Personalized glucose forecasting for type 2 diabetes using data assimilation

    Get PDF
    Type 2 diabetes leads to premature death and reduced quality of life for 8% of Americans. Nutrition management is critical to maintaining glycemic control, yet it is difficult to achieve due to the high individual differences in glycemic response to nutrition. Anticipating glycemic impact of different meals can be challenging not only for individuals with diabetes, but also for expert diabetes educators. Personalized computational models that can accurately forecast an impact of a given meal on an individual’s blood glucose levels can serve as the engine for a new generation of decision support tools for individuals with diabetes. However, to be useful in practice, these computational engines need to generate accurate forecasts based on limited datasets consistent with typical self-monitoring practices of individuals with type 2 diabetes. This paper uses three forecasting machines: (i) data assimilation, a technique borrowed from atmospheric physics and engineering that uses Bayesian modeling to infuse data with human knowledge represented in a mechanistic model, to generate real-time, personalized, adaptable glucose forecasts; (ii) model averaging of data assimilation output; and (iii) dynamical Gaussian process model regression. The proposed data assimilation machine, the primary focus of the paper, uses a modified dual unscented Kalman filter to estimate states and parameters, personalizing the mechanistic models. Model selection is used to make a personalized model selection for the individual and their measurement characteristics. The data assimilation forecasts are empirically evaluated against actual postprandial glucose measurements captured by individuals with type 2 diabetes, and against predictions generated by experienced diabetes educators after reviewing a set of historical nutritional records and glucose measurements for the same individual. The evaluation suggests that the data assimilation forecasts compare well with specific glucose measurements and match or exceed in accuracy expert forecasts. We conclude by examining ways to present predictions as forecast-derived range quantities and evaluate the comparative advantages of these ranges

    Bayesian Combination of Multiple Plasma Glucose Predictors

    Get PDF
    This paper presents a novel on-line approach of merging multiple different predictors of plasma glucose into a single optimized prediction. Various different predictors are merged by recursive weighting into a single prediction using regularized optimization. The approach is evaluated on 12 data sets of type I diabetes data, using three parallel predictors. The performance of the combined prediction is better, or in par, with the best predictor for each evaluated data set. The results suggest that the outlined method could be a suitable way to improve prediction performance when using multiple predictors, or as a means to reduce the risk associated with definite a priori model selection

    On-line policy learning and adaptation for real-time personalization of an artificial pancreas

    Get PDF
    The dynamic complexity of the glucose-insulin metabolism in diabetic patients is the main obstacle towards widespread use of an artificial pancreas. The significant level of subject-specific glycemic variability requires continuously adapting the control policy to successfully face daily changes in patient´s metabolism and lifestyle. In this paper, an on-line selective reinforcement learning algorithm that enables real-time adaptation of a control policy based on ongoing interactions with the patient so as to tailor the artificial pancreas is proposed. Adaptation includes two online procedures: on-line sparsification and parameter updating of the Gaussian process used to approximate the control policy. With the proposed sparsification method, the support data dictionary for on-line learning is modified by checking if in the arriving data stream there exists novel information to be added to the dictionary in order to personalize the policy. Results obtained in silico experiments demonstrate that on-line policy learning is both safe and efficient for maintaining blood glucose variability within the normoglycemic range.Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernacion. Comision de Invest.cientificas. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires; ArgentinaFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingenieria Olavarria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    Modeling, Estimation, and Feedback Techniques in Type 2 Diabetes

    Get PDF

    Predicting Insulin Pump Therapy Settings

    Get PDF
    Millions of people live with diabetes worldwide [7]. To mitigate some of the many symptoms associated with diabetes, an estimated 350,000 people in the United States rely on insulin pumps [17]. For many of these people, how effectively their insulin pump performs is the difference between sleeping through the night and a life threatening emergency treatment at a hospital. Three programmed insulin pump therapy settings governing effective insulin pump function are: Basal Rate (BR), Insulin Sensitivity Factor (ISF), and Carbohydrate Ratio (ICR). For many people using insulin pumps, these therapy settings are often not correct, given their physiological needs. While existing reinforcement learning models can predict actual physiological values for these settings, they require iteration and can be slow. The primary contribution of this research is to present a pipeline capable of providing instant predictions of close to actual patient physiological ISF, ICR, and BR from 30 days worth of data. In theory, this reduces patient waiting periods from roughly 6-8 weeks for existing reinforcement learning models to 30 days. This can serve as an aide in recommending pump therapy settings. Data used in this study include 1,000 simulated multivariate insulin pump time series. These time series were generated by a proprietary simulator developed by Tandem Diabetes Care. This multivariate time series data also integrates simulated continuous glucose monitor (CGM) data. This research proposes a pipeline for predicting actual patient BR, ISF, and ICR. Feature engineering, a component of this pipeline, included contextual consensus time series motif analysis. Models in the pipeline include time series native techniques such as Deep Convolutional Neural Networks (DNN) with a Long Short Term Memory input layers (LSTM) and aggregation based models such as Ridge regression and Lasso. Aggregation based ridge regression showed the most promising results, outperforming a naive model and a DNN model. For the data evaluated and with a 20% holdout test set, aggregate based ridge regression predicted the following normalized patient pump settings: ISF with a Mean Absolute Error of roughly 9.0%, ICR with a Mean Absolute Error of roughly 5% and BR with a Mean Absolute Error of roughly 6%. This is likely due to the reduction that aggregation based methods perform on each patient time series, reducing each one into a single tuple. This makes aggregation based methods less susceptible to noise and sparse signals. One limitation in this study is that the simulated data assumes a constant value of ISF, ICR, and BR over 24 hour periods for people with diabetes. In practice, this is not the case; ISF, ICR and BR fluctuate throughout the course of a day. A future consideration would be to use simulated data with non constant 24-hour ISF, ICR, and BR profiles. Insulin pumps greatly improve management and outcomes for people with diabetes. Ideally, by instantly improving programmed values of ISF, ICR, and BR, people relying on insulin pumps can spend less time worrying about their pump working ineffectively, and sleep through the night knowing it is less likely they will suffer a diabetes related medical emergency. To this end, it is the hope of the researchers that the ideas, pipelines, and inference presented are further explored and tested

    Challenges in biomedical data science: data-driven solutions to clinical questions

    Get PDF
    Data are influencing every aspect of our lives, from our work activities, to our spare time and even to our health. In this regard, medical diagnosis and treatments are often supported by quantitative measures and observations, such as laboratory tests, medical imaging or genetic analysis. In medicine, as well as in several other scientific domains, the amount of data involved in each decision-making process has become overwhelming. The complexity of the phenomena under investigation and the scale of modern data collections has long superseded human analysis and insights potential
    • …
    corecore