1,093 research outputs found

    Wind-solar-hydrothermal dispatch using convex optimization

    Get PDF
    In this research a convex optimization methodology is proposed for the Shortterm hydrothermal scheduling (STHS). In addition, wind and solar generation are also considered under a robust approach by modeling the equilibrium of power flow constraint as chance box constraints, which allows determining the amount of renewable source available with a specific probability value. The proposed methodology guarantees global optimum of the convexified model andfast convergences..

    Short-term generation scheduling in a hydrothermal power system.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D173872 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Short-term optimal hydro-thermal scheduling using clustered adaptive teaching learning based optimization

    Get PDF
    In this paper, Clustered Adaptive Teaching Learning Based Optimization (CATLBO) algorithm is proposed for determining the optimal hourly schedule of power generation in a hydro-thermal power system. In the proposed approach, a multi-reservoir cascaded hydro-electric system with a non-linear relationship between water discharge rate, net head and power generation is considered. Constraints such as power balance, water balance, reservoir volume limits and operation limits of hydro and thermal plants are considered. The feasibility and effectiveness of the proposed algorithm is demonstrated through a test system, and the results are compared with existing conventional and evolutionary algorithms. Simulation results reveals that the proposed CATLBO algorithm appears to be the best in terms of convergence speed and optimal cost compared with other techniques

    Optimal scheduling of large-scale wind-hydro-thermal systems with fixed-head short-term model

    Get PDF
    © 2020 by the authors. In this paper, a Modified Adaptive Selection Cuckoo Search Algorithm (MASCSA) is proposed for solving the Optimal Scheduling of Wind-Hydro-Thermal (OSWHT) systems problem. The main objective of the problem is to minimize the total fuel cost for generating the electricity of thermal power plants, where energy from hydropower plants and wind turbines is exploited absolutely. The fixed-head short-term model is taken into account, by supposing that the water head is constant during the operation time, while reservoir volume and water balance are constrained over the scheduled time period. The proposed MASCSA is compared to other implemented cuckoo search algorithms, such as the conventional Cuckoo Search Algorithm (CSA) and Snap-Drift Cuckoo Search Algorithm (SDCSA). Two large systems are used as study cases to test the real improvement of the proposed MASCSA over CSA and SDCSA. Among the two test systems, the wind-hydro-thermal system is a more complicated one, with two wind farms and four thermal power plants considering valve effects, and four hydropower plants scheduled in twenty-four one-hour intervals. The proposed MASCSA is more effective than CSA and SDCSA, since it can reach a higher success rate, better optimal solutions, and a faster convergence. The obtained results show that the proposed MASCSA is a very effective method for the hydrothermal system and wind-hydro-thermal systems

    Optimal power generation for wind-hydro-thermal system using meta-heuristic algorithms

    Get PDF
    In this paper, Cuckoo search algorithm (CSA) is suggested for determining optimal operation parameters of the combined wind turbine and hydrothermal system (CWHTS) in order to minimize total fuel cost of all operating thermal power plants while all constraints of plants and system are exactly satisfied. In addition to CSA, Particle swarm optimization (PSO), PSO with constriction factor and inertia weight factor (FCIWPSO) and Social Ski-Driver (SSD) are also implemented for comparisons. The CWHTS is optimally scheduled over twenty-four one-hour interval and total cost of producing power energy is employed for comparison. Via numerical results and graphical results, it indicates CSA can reach much better results than other ones in terms of lower total cost, higher success rate and faster search process. Consequently, the conclusion is confirmed that CSA is a very efficient method for the problem of determining optimal operation parameters of CWHTS

    Introducing adaptive machine learning technique for solving short-term hydrothermal scheduling with prohibited discharge zones

    Get PDF
    The short-term hydrothermal scheduling (STHTS) problem has paramount importance in an interconnected power system. Owing to an operational research problem, it has been a basic concern of power companies to minimize fuel costs. To solve STHTS, a cascaded topology of four hydel generators with one equivalent thermal generator is considered. The problem is complex and non-linear and has equality and inequality constraints, including water discharge rate constraint, power generation constraint of hydel and thermal power generators, power balance constraint, reservoir storage constraint, initial and end volume constraint of water reservoirs, and hydraulic continuity constraint. The time delays in the transport of water from one reservoir to the other are also considered. A supervised machine learning (ML) model is developed that takes the solution of the STHTS problem without PDZ, by any metaheuristic technique, as input and outputs an optimized solution to STHTS with PDZ and valve point loading (VPL) effect. The results are quite promising and better compared to the literature. The versatility and effectiveness of the proposed approach are tested by applying it to the previous works and comparing the cost of power generation given by this model with those in the literature. A comparison of results and the monetary savings that could be achieved by using this approach instead of using only metaheuristic algorithms for PDZ and VPL are also given. The slipups in the VPL case in the literature are also addressed

    Intelligent power system operation in an uncertain environment

    Get PDF
    This dissertation presents some challenging problems in power system operations. The efficacy of a heuristic method, namely, modified discrete particle swarm optimization (MDPSO) algorithm is illustrated and compared with other methods by solving the reliability based generator maintenance scheduling (GMS) optimization problem of a practical hydrothermal power system. The concept of multiple swarms is incorporated into the MDPSO algorithm to form a robust multiple swarms-modified particle swarm optimization (MS-MDPSO) algorithm and applied to solving the GMS problem on two power systems. Heuristic methods are proposed to circumvent the problems of imposed non-smooth assumptions common with the classical approaches in solving the challenging dynamic economic dispatch problem. The multi-objective combined economic and emission dispatch (MO-CEED) optimization problem for a wind-hydrothermal power system is formulated and solved in this dissertation. This MO-CEED problem formulation becomes a challenging problem because of the presence of uncertainty in wind power. A family of distributed optimal Pareto fronts for the MO-CEED problem has been generated for different scenarios of capacity credit of wind power. A real-time (RT) network stability index is formulated for determining a power system\u27s ability to continue to provide service (electric energy) in a RT manner in case of an unforeseen catastrophic contingency. Cascading stages of fuzzy inference system is applied to combine non real-time (NRT) and RT power system assessments. NRT analysis involves eigenvalue and transient energy analysis. RT analysis involves angle, voltage and frequency stability indices. RT Network status index is implemented in real-time on a practical power system --Abstract, page iv
    corecore