5,003 research outputs found

    Some New Approaches to Forecasting the Price of Electricity: A Study of Californian Market

    Get PDF
    In this paper we consider the forecasting performance of a range of semi- and non- parametric methods applied to high frequency electricity price data. Electricity price time-series data tend to be highly seasonal, mean reverting with price jumps/spikes and time- and price-dependent volatility. The typical approach in this area has been to use a range of tools that have proven popular in the financial econometrics literature, where volatility clustering is common. However, electricity time series tend to exhibit higher volatility on a daily basis, but within a mean reverting framework, albeit with occasional large ’spikes’. In this paper we compare the existing forecasting performance of some popular parametric methods, notably GARCH AR-MAX, with approaches that are new to this area of applied econometrics, in particular, Artificial Neural Networks (ANN); Linear Regression Trees, Local Regressions and Generalised Additive Models. Section 2 presents the properties and definitions of the models to be compared and Section 3 the characteristics of the data used which in this case are spot electricity prices from the Californian market 07/1999-12/2000. This period includes the ’crisis’ months of May-August 2000 where extreme volatility was observed. Section 4 presents the results and ranking of methods on the basis of forecasting performance. Section 5 concludes.Electricty Time Series; Forecasting Performance; Semi- and Non- Parametric Methods

    Short-term load forecasting based on a semi-parametric additive model

    Get PDF
    Short-term load forecasting is an essential instrument in power system planning, operation and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the contrary, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.Short-term load forecasting, additive model, time series, forecast distribution

    A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons

    Get PDF
    With the globally increasing electricity demand, its related uncertainties are on the rise as well. Therefore, a deeper insight of load forecasting techniques for projecting future electricity demands becomes imperative for business entities and policy makers. The electricity demand is governed by a set of different variables or “electricity demand determinants”. These demand determinants depend on forecasting horizons (long term, medium term, and short term), the load aggregation level, climate, and socio-economic activities. In this paper, a review of different electricity demand forecasting methodologies is provided in the context of a group of low and middle income countries. The article presents a comprehensive literature review by tabulating the different demand determinants used in different countries and forecasting the trends and techniques used in these countries. A comparative review of these forecasting methodologies over different time horizons reveals that the time series modeling approach has been extensively used while forecasting for long and medium terms. For short term forecasts, artificial intelligence-based techniques remain prevalent in the literature. Furthermore, a comparative analysis of the demand determinants in these countries indicates a frequent use of determinants like the population, GDP, weather, and load data over different time horizons. Following the analysis, potential research gaps are identified, and recommendations are provided, accordingly

    Quantifying Forecast Uncertainty in the Energy Domain

    Get PDF
    This dissertation focuses on quantifying forecast uncertainties in the energy domain, especially for the electricity and natural gas industry. Accurate forecasts help the energy industry minimize their production costs. However, inaccurate weather forecasts, unusual human behavior, sudden changes in economic conditions, unpredictable availability of renewable sources (wind and solar), etc., represent uncertainties in the energy demand-supply chain. In the current smart grid era, total electricity demand from non-renewable sources influences by the uncertainty of the renewable sources. Thus, quantifying forecast uncertainty has become important to improve the quality of forecasts and decision making. In the natural gas industry, the task of the gas controllers is to guide the hourly natural gas flow in such a way that it remains within a certain daily maximum and minimum flow limits to avoid penalties. Due to inherent uncertainties in the natural gas forecasts, setting such maximum and minimum flow limits a day or more in advance is difficult. Probabilistic forecasts (cumulative distribution functions), which quantify forecast uncertainty, are a useful tool to guide gas controllers to make such tough decisions. Three methods (parametric, semi-parametric, and non-parametric) are presented in this dissertation to generate 168-hour horizon probabilistic forecasts for two real utilities (electricity and natural gas) in the US. Probabilistic forecasting is used as a tool to solve a real-life problem in the natural gas industry. A benchmark was created based on the existing solution, which assumes forecast error is normal. Two new probabilistic forecasting methods are implemented in this work without the normality assumption. There is no single popular evaluation technique available to assess probabilistic forecasts, which is one reason for people’s lack of interest in using probabilistic forecasts. Existing scoring rules are complicated, dataset dependent, and provide less emphasis on reliability (empirical distribution matches with observed distribution) than sharpness (the smallest distance between any two quantiles of a CDF). A graphical way to evaluate probabilistic forecasts along with two new scoring rules are offered in this work. The non-parametric and semi-parametric probabilistic forecasting methods outperformed the benchmark method during unusual days (difficult days to forecast) as well as on other days
    corecore