4 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Design and validation of novel methods for long-term road traffic forecasting

    Get PDF
    132 p.Road traffic management is a critical aspect for the design and planning of complex urban transport networks for which vehicle flow forecasting is an essential component. As a testimony of its paramount relevance in transport planning and logistics, thousands of scientific research works have covered the traffic forecasting topic during the last 50 years. In the beginning most approaches relied on autoregressive models and other analysis methods suited for time series data. During the last two decades, the development of new technology, platforms and techniques for massive data processing under the Big Data umbrella, the availability of data from multiple sources fostered by the Open Data philosophy and an ever-growing need of decision makers for accurate traffic predictions have shifted the spotlight to data-driven procedures. Even in this convenient context, with abundance of open data to experiment and advanced techniques to exploit them, most predictive models reported in literature aim for shortterm forecasts, and their performance degrades when the prediction horizon is increased. Long-termforecasting strategies are more scarce, and commonly based on the detection and assignment to patterns. These approaches can perform reasonably well unless an unexpected event provokes non predictable changes, or if the allocation to a pattern is inaccurate.The main core of the work in this Thesis has revolved around datadriven traffic forecasting, ultimately pursuing long-term forecasts. This has broadly entailed a deep analysis and understanding of the state of the art, and dealing with incompleteness of data, among other lesser issues. Besides, the second part of this dissertation presents an application outlook of the developed techniques, providing methods and unexpected insights of the local impact of traffic in pollution. The obtained results reveal that the impact of vehicular emissions on the pollution levels is overshadowe

    Design and validation of novel methods for long-term road traffic forecasting

    Get PDF
    132 p.Road traffic management is a critical aspect for the design and planning of complex urban transport networks for which vehicle flow forecasting is an essential component. As a testimony of its paramount relevance in transport planning and logistics, thousands of scientific research works have covered the traffic forecasting topic during the last 50 years. In the beginning most approaches relied on autoregressive models and other analysis methods suited for time series data. During the last two decades, the development of new technology, platforms and techniques for massive data processing under the Big Data umbrella, the availability of data from multiple sources fostered by the Open Data philosophy and an ever-growing need of decision makers for accurate traffic predictions have shifted the spotlight to data-driven procedures. Even in this convenient context, with abundance of open data to experiment and advanced techniques to exploit them, most predictive models reported in literature aim for shortterm forecasts, and their performance degrades when the prediction horizon is increased. Long-termforecasting strategies are more scarce, and commonly based on the detection and assignment to patterns. These approaches can perform reasonably well unless an unexpected event provokes non predictable changes, or if the allocation to a pattern is inaccurate.The main core of the work in this Thesis has revolved around datadriven traffic forecasting, ultimately pursuing long-term forecasts. This has broadly entailed a deep analysis and understanding of the state of the art, and dealing with incompleteness of data, among other lesser issues. Besides, the second part of this dissertation presents an application outlook of the developed techniques, providing methods and unexpected insights of the local impact of traffic in pollution. The obtained results reveal that the impact of vehicular emissions on the pollution levels is overshadowe

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore