72 research outputs found

    Forecasting methods in energy planning models

    Get PDF
    Energy planning models (EPMs) play an indispensable role in policy formulation and energy sector development. The forecasting of energy demand and supply is at the heart of an EPM. Different forecasting methods, from statistical to machine learning have been applied in the past. The selection of a forecasting method is mostly based on data availability and the objectives of the tool and planning exercise. We present a systematic and critical review of forecasting methods used in 483 EPMs. The methods were analyzed for forecasting accuracy; applicability for temporal and spatial predictions; and relevance to planning and policy objectives. Fifty different forecasting methods have been identified. Artificial neural network (ANN) is the most widely used method, which is applied in 40% of the reviewed EPMs. The other popular methods, in descending order, are: support vector machine (SVM), autoregressive integrated moving average (ARIMA), fuzzy logic (FL), linear regression (LR), genetic algorithm (GA), particle swarm optimization (PSO), grey prediction (GM) and autoregressive moving average (ARMA). In terms of accuracy, computational intelligence (CI) methods demonstrate better performance than that of the statistical ones, in particular for parameters with greater variability in the source data. However, hybrid methods yield better accuracy than that of the stand-alone ones. Statistical methods are useful for only short and medium range, while CI methods are preferable for all temporal forecasting ranges (short, medium and long). Based on objective, most EPMs focused on energy demand and load forecasting. In terms geographical coverage, the highest number of EPMs were developed on China. However, collectively, more models were established for the developed countries than the developing ones. Findings would benefit researchers and professionals in gaining an appreciation of the forecasting methods, and enable them to select appropriate method(s) to meet their needs

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    SMART CITY MANAGEMENT USING MACHINE LEARNING TECHNIQUES

    Get PDF
    In response to the growing urban population, smart cities are designed to improve people\u27s quality of life by implementing cutting-edge technologies. The concept of a smart city refers to an effort to enhance a city\u27s residents\u27 economic and environmental well-being via implementing a centralized management system. With the use of sensors and actuators, smart cities can collect massive amounts of data, which can improve people\u27s quality of life and design cities\u27 services. Although smart cities contain vast amounts of data, only a percentage is used due to the noise and variety of the data sources. Information and communication technology (ICT) and the Internet of Things (IoT) play a far more prominent role in developing smart cities when it comes to making choices, designing policies, and executing different methods. Smart city applications have made great strides thanks to recent advances in artificial intelligence (AI), especially machine learning (ML) and deep learning (DL). The applications of ML and DL have significantly increased the accuracy aspect of decision-making in smart cities, especially in analyzing the captured data using IoT-based devices and sensors. Smart cities employ algorithms that use unlabeled and labeled data to manage resources and deliver individualized services effectively. It has instantaneous practical use in many crucial areas, including smart health, smart environment, smart transportation system, energy management, and smart water distribution system in a smart city. Hence, ML and DL have become hot research topics in AI techniques in recent years and are proving to be accurate optimization techniques in smart cities. In addition, artificial intelligence algorithms enable the processing massive datasets and identify patterns and characteristics that would otherwise go unnoticed. Despite these advantages, researchers\u27 skepticism of AI\u27s sometimes mysterious inner workings has prevented it from being widely used for smart cities. This thesis\u27s primary intent is to explore the value of employing diverse AI and ML techniques in developing smart city-centric domains and investigate the efficacy of these proposed approaches in four different aspects of the smart city such as smart energy, smart transportation system, smart water distribution system and smart environment. In addition, we use these machine learning approaches to make a data analytics and visualization unit module for the smart city testbed. Internet-of-Things-based machine learning approaches in diverse aspects have repeatedly demonstrated greater accuracy, sensitivity, cost-effectiveness, and productivity, used in the built-in Virginia Commonwealth University\u27s real-time testbed

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book

    Review of multiple load forecasting method for integrated energy system

    Get PDF
    In order to further improve the efficiency of energy utilization, Integrated Energy Systems (IES) connect various energy systems closer, which has become an important energy utilization mode in the process of energy transition. Because the complex and variable multiple load is an important part of the new power system, the load forecasting is of great significance for the planning, operation, control, and dispatching of the new power system. In order to timely track the latest research progress of the load forecasting method and grasp the current research hotspot and the direction of load forecasting, this paper reviews the relevant research content of the forecasting methods. Firstly, a brief overview of Integrated Energy Systems and load forecasting is provided. Secondly, traditional forecasting methods based on statistical analysis and intelligent forecasting methods based on machine learning are discussed in two directions to analyze the advantages, disadvantages, and applicability of different methods. Then, the results of Integrated Energy Systemss multiple load forecasting for the past 5 years are compiled and analyzed. Finally, the Integrated Energy Systems load forecasting is summarized and looked forward

    HOME ENERGY MANAGEMENT SYSTEM FOR DEMAND RESPONSE PURPOSES

    Get PDF
    The growing demand for electricity has led to increasing efforts to generate and satisfy the rising demand. This led to suppliers attempting to reduce consumption with the help of the users. Requests to shift unnecessary loads off the peak hours, using other sources of generators to supply the grid while offering incentives to the users have made a significant effect. Furthermore, automated solutions were implemented with the help of Home Energy Management Systems (HEMS) where the user can remotely manage household loads to reduce consumption or cost. Demand Response (DR) is the process of reducing power consumption in a response to demand signals generated by the utility based on many factors such as the Time of Use (ToU) prices. Automated HEMS use load scheduling techniques to control house appliances in response to DR signals. Scheduling can be purely user-dependent or fully automated with minimum effort from the user. This thesis presents a HEMS which automatically schedules appliances around the house to reduce the cost to the minimum. The main contributions in this thesis are the house controller model which models a variety of thermal loads in addition to two shiftable loads, and the optimizer which schedules the loads to reduce the cost depending on the DR signals. The controllers focus on the thermal loads since they have the biggest effect on the electricity bill, they also consider many factors ignored in similar models such as the physical properties of the room/medium, the outer temperatures, the comfort levels of the users, and the occupancy of the house during scheduling. The DR signal was the hourly electricity price; normally higher during the peak hours. Another main part of the thesis was studying multiple optimization algorithms and utilizing them to get the optimum scheduling. Results showed a maximum of 44% cost reduction using different metaheuristic optimization algorithms and different price and occupancy schemes
    corecore