147 research outputs found

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    State of the art of machine learning models in energy systems: A systematic review

    Get PDF
    Machine learning (ML) models have been widely used in the modeling, design and prediction in energy systems. During the past two decades, there has been a dramatic increase in the advancement and application of various types of ML models for energy systems. This paper presents the state of the art of ML models used in energy systems along with a novel taxonomy of models and applications. Through a novel methodology, ML models are identified and further classified according to the ML modeling technique, energy type, and application area. Furthermore, a comprehensive review of the literature leads to an assessment and performance evaluation of the ML models and their applications, and a discussion of the major challenges and opportunities for prospective research. This paper further concludes that there is an outstanding rise in the accuracy, robustness, precision and generalization ability of the ML models in energy systems using hybrid ML models. Hybridization is reported to be effective in the advancement of prediction models, particularly for renewable energy systems, e.g., solar energy, wind energy, and biofuels. Moreover, the energy demand prediction using hybrid models of ML have highly contributed to the energy efficiency and therefore energy governance and sustainability

    Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems

    Get PDF
    Electricity demand forecasting remains a challenging issue for power system scheduling at varying stages of energy sectors. Short Term load forecasting (STLF) plays a vital part in regulated power systems and electricity markets, which is commonly employed to predict the outcomes power failures. This paper presents an intelligent machine learning with evolutionary algorithm based STLF model, called (IMLEA-STLF) for power systems which involves different stages of operations such as data decomposition, data preprocessing, feature selection, prediction, and parameter tuning. Wavelet transform (WT) is used for the decomposition of the time series and Oppositional Artificial Fish Swarm Optimization algorithm (OAFSA) based feature selection technique to elect an optimal set of features. In order to improvise the convergence rate of AFSA, oppositional based learning (OBL) concept is integrated into it. Then, the water wave optimization (WWO) with Elman neural networks (ENN) model is employed for the predictive process. Finally, inverse WT is applied and obtained the hourly load forecasting data. To validate the effective predictive outcome of the IMLEA-STLF model, an extensive set of simulations take place on benchmark dataset. The resultant values ensured the promising results of the IMLEA-STLF model over the other compared methods

    Control System for Electrical Power Grids with Renewables using Artificial Intelligence Methods

    Get PDF
    Modern electrical and electronic devices are very sensitive to the power supply and require steady and stable electric power. Factories may also need electric power within a specific standard range of voltage, frequency, and current to avoid defects in the production. For these reasons electric power utilities must produce an electric power of a specific standard of power quality parameters [EN50160]. Nowadays, renewable energy sources, such as wind energy and solar energy are used to generate electric power as free and clean power sources as well to reduce fuel consumption and environmental pollution as much as possible. Renewable energy, e.g. wind speed or solar irradiance, are not stable or not constant energies over the time. Therefore smart control systems (SCSs) are needed for operate the power system in optimal way which help for producing a power with good quality from renewable sources. The forecasting and prediction models play a main role in these issues and contribute as the important part of the smart control system (SCS). The main task of the SCS is to keep the generated power equal to the consumed power as well as to consider standard levels of power quality parameters as much as possible. Some of previous studies have focused on forecasting power quality parameters, power load, wind speed and solar irradiance using machine learning models as neural networks, support vector machines, fuzzy sets, and neuro fuzzy. This thesis proposes designing forecasting systems using machine learning techniques in order to be use in control and operate an electrical power system. In this study, design and tested forecasting systems related to the power and renewable energies. These systems include wind speed forecasting, power load forecasting and power quality parameters forecasting. The main part of this thesis is focus in power quality parameters forecasting in short-term, these parameters are: power frequency, magnitude of the supply voltage, total harmonic distortion of voltage (THDu), total harmonic distortion of current (THDi), and short term flicker severity (Pst) according to the definition in [EN50160]. The output of the forecasting models of power quality parameters can be used in shifting the load to run in switch time which will help for correct and optimize the quality of the power.Modern electrical and electronic devices are very sensitive to the power supply and require steady and stable electric power. Factories may also need electric power within a specific standard range of voltage, frequency, and current to avoid defects in the production. For these reasons electric power utilities must produce an electric power of a specific standard of power quality parameters [EN50160]. Nowadays, renewable energy sources, such as wind energy and solar energy are used to generate electric power as free and clean power sources as well to reduce fuel consumption and environmental pollution as much as possible. Renewable energy, e.g. wind speed or solar irradiance, are not stable or not constant energies over the time. Therefore smart control systems (SCSs) are needed for operate the power system in optimal way which help for producing a power with good quality from renewable sources. The forecasting and prediction models play a main role in these issues and contribute as the important part of the smart control system (SCS). The main task of the SCS is to keep the generated power equal to the consumed power as well as to consider standard levels of power quality parameters as much as possible. Some of previous studies have focused on forecasting power quality parameters, power load, wind speed and solar irradiance using machine learning models as neural networks, support vector machines, fuzzy sets, and neuro fuzzy. This thesis proposes designing forecasting systems using machine learning techniques in order to be use in control and operate an electrical power system. In this study, design and tested forecasting systems related to the power and renewable energies. These systems include wind speed forecasting, power load forecasting and power quality parameters forecasting. The main part of this thesis is focus in power quality parameters forecasting in short-term, these parameters are: power frequency, magnitude of the supply voltage, total harmonic distortion of voltage (THDu), total harmonic distortion of current (THDi), and short term flicker severity (Pst) according to the definition in [EN50160]. The output of the forecasting models of power quality parameters can be used in shifting the load to run in switch time which will help for correct and optimize the quality of the power.410 - Katedra elektroenergetikyvyhově

    Artificial intelligence in wind speed forecasting: a review

    Get PDF
    Wind energy production has had accelerated growth in recent years, reaching an annual increase of 17% in 2021. Wind speed plays a crucial role in the stability required for power grid operation. However, wind intermittency makes accurate forecasting a complicated process. Implementing new technologies has allowed the development of hybrid models and techniques, improving wind speed forecasting accuracy. Additionally, statistical and artificial intelligence methods, especially artificial neural networks, have been applied to enhance the results. However, there is a concern about identifying the main factors influencing the forecasting process and providing a basis for estimation with artificial neural network models. This paper reviews and classifies the forecasting models used in recent years according to the input model type, the pre-processing and post-processing technique, the artificial neural network model, the prediction horizon, the steps ahead number, and the evaluation metric. The research results indicate that artificial neural network (ANN)-based models can provide accurate wind forecasting and essential information about the specific location of potential wind use for a power plant by understanding the future wind speed values

    Advanced Methods of Power Load Forecasting

    Get PDF
    This reprint introduces advanced prediction models focused on power load forecasting. Models based on artificial intelligence and more traditional approaches are shown, demonstrating the real possibilities of use to improve prediction in this field. Models of LSTM neural networks, LSTM networks with a SESDA architecture, in even LSTM-CNN are used. On the other hand, multiple seasonal Holt-Winters models with discrete seasonality and the application of the Prophet method to demand forecasting are presented. These models are applied in different circumstances and show highly positive results. This reprint is intended for both researchers related to energy management and those related to forecasting, especially power load
    corecore