2,373 research outputs found

    Short-Term Energy Demand Forecast in Hotels Using Hybrid Intelligent Modeling

    Get PDF
    This paper is the extension of the conference paper: Casteleiro-Roca, J.-L.; Gómez-González, J.F.; Calvo-Rolle, J.L.; Jove, E.; Quintián, H.; Acosta Martín, J.F.; Gonzalez Perez, S.; Gonzalez Diaz, B.; Calero-Garcia, F. and Méndez-Perez, J.A. Prediction of the Energy Demand of a Hotel Using an Artificial Intelligence-Based Model. In Proceedings of the 13th International Conference, Hybrid Artificial Intelligent Systems (HAIS), Oviedo, Spain, 20–22 June 2018.[Abstract] The hotel industry is an important energy consumer that needs efficient energy management methods to guarantee its performance and sustainability. The new role of hotels as prosumers increases the difficulty in the design of these methods. Also, the scenery is more complex as renewable energy systems are present in the hotel energy mix. The performance of energy management systems greatly depends on the use of reliable predictions for energy load. This paper presents a new methodology to predict energy load in a hotel based on intelligent techniques. The model proposed is based on a hybrid intelligent topology implemented with a combination of clustering techniques and intelligent regression methods (Artificial Neural Network and Support Vector Regression). The model includes its own energy demand information, occupancy rate, and temperature as inputs. The validation was done using real hotel data and compared with time-series models. Forecasts obtained were satisfactory, showing a promising potential for its use in energy management systems in hotel resortsFundación CajaCanarias; grant number PR70575

    Neuro-fuzzy mid-term forecasting of electricity consumption using meteorological data

    Get PDF
    Abstract : Forecasting energy consumption is highly essential for strategic and operational planning. This study uses the Adaptive-Neuro-Fuzzy Inference System (ANFIS) for a mid-term forecast of electricity consumption. The model comprises of three meteorological variables as inputs and electricity consumption as output. Two ANFIS models with two clustering techniques (Fuzzy c-Means (FCM) and Grid Partitioning (GP) were developed (ANFIS-FCM and ANFIS- GP) to forecast monthly energy consumption based on meteorological variables. The performance of each model was determined using known statistical metrics. This compares the predicted electricity consumption with the observed and a statistical significance between the two reported. ANFIS-FCM model recorded a better mean absolute deviation (MAD), root mean square (RMSE), and mean absolute percentage error (MAPE) values of 0.396, 0.738, and 8.613 respectively compared to the ANFIS-GP model, which has MAD, RMSE, and MAPE values of 0.450, 0.762, and 9.430 values respectively. The study established that FCM is a good clustering technique in ANFIS compared to GP and recommended a comparison between the two techniques on hybrid ANFIS model

    A K-means Group Division and LSTM Based Method for Hotel Demand Forecasting

    Get PDF
    The accuracy of hotel demand forecasting is affected by factors such as the completeness of historical data and the maturity of models. Most of the existing methods are based on rich data, without considering that single hotels may only obtain sparse data. Therefore, a K-means group division and Long Short-Term Memory (LSTM) based method is proposed in this paper. Guest types are introduced into the forecasting to provide reference for hotel\u27s further decision-making. Using an example of 1493 hotels in Europe, we divide hotel groups and forecast the flow of leisure and business guests. The experimental results show that, compared with the benchmark models, LSTM can improve the forecasting performance of hotel group; compared with single hotels, the forecasting of hotel groups can effectively avoid inaccuracy caused by sparse data. The results can provide necessary reference for hospitality to make decisions based on guest types

    Load forecast on a Micro Grid level through Machine Learning algorithms

    Get PDF
    As Micro Redes constituem um sector em crescimento da indústria energética, representando uma mudança de paradigma, desde as remotas centrais de geração até à produção mais localizada e distribuída. A capacidade de isolamento das principais redes elétricas e atuar de forma independente tornam as Micro Redes em sistemas resilientes, capazes de conduzir operações flexíveis em paralelo com a prestação de serviços que tornam a rede mais competitiva. Como tal, as Micro Redes fornecem energia limpa eficiente de baixo custo, aprimoram a coordenação dos ativos e melhoram a operação e estabilidade da rede regional de eletricidade, através da capacidade de resposta dinâmica aos recursos energéticos. Para isso, necessitam de uma coordenação de gestão inteligente que equilibre todas as tecnologias ao seu dispor. Daqui surge a necessidade de recorrer a modelos de previsão de carga e de produção robustos e de confiança, que interligam a alocação dos recursos da rede perante as necessidades emergentes. Sendo assim, foi desenvolvida a metodologia HALOFMI, que tem como principal objetivo a criação de um modelo de previsão de carga para 24 horas. A metodologia desenvolvida é constituída, numa primeira fase, por uma abordagem híbrida de multinível para a criação e escolha de atributos, que alimenta uma rede neuronal (Multi-Layer Perceptron) sujeita a um ajuste de híper-parâmetros. Posto isto, numa segunda fase são testados dois modos de aplicação e gestão de dados para a Micro Rede. A metodologia desenvolvida é aplicada em dois casos de estudo: o primeiro é composto por perfis de carga agregados correspondentes a dados de clientes em Baixa Tensão Normal e de Unidades de Produção e Autoconsumo (UPAC). Este caso de estudo apresenta-se como um perfil de carga elétrica regular e com contornos muito suaves. O segundo caso de estudo diz respeito a uma ilha turística e representa um perfil irregular de carga, com variações bruscas e difíceis de prever e apresenta um desafio maior em termos de previsão a 24-horas A partir dos resultados obtidos, é avaliado o impacto da integração de uma seleção recursiva inteligente de atributos, seguido por uma viabilização do processo de redução da dimensão de dados para o operador da Micro Rede, e por fim uma comparação de estimadores usados no modelo de previsão, através de medidores de erros na performance do algoritmo.Micro Grids constitute a growing sector of the energetic industry, representing a paradigm shift from the central power generation plans to a more distributed generation. The capacity to work isolated from the main electric grid make the MG resilient system, capable of conducting flexible operations while providing services that make the network more competitive. Additionally, Micro Grids supply clean and efficient low-cost energy, enhance the flexible assets coordination and improve the operation and stability of the of the local electric grid, through the capability of providing a dynamic response to the energetic resources. For that, it is required an intelligent coordination which balances all the available technologies. With this, rises the need to integrate accurate and robust load and production forecasting models into the MG management platform, thus allowing a more precise coordination of the flexible resource according to the emerging demand needs. For these reasons, the HALOFMI methodology was developed, which focus on the creation of a precise 24-hour load forecast model. This methodology includes firstly, a hybrid multi-level approach for the creation and selection of features. Then, these inputs are fed to a Neural Network (Multi-Layer Perceptron) with hyper-parameters tuning. In a second phase, two ways of data operation are compared and assessed, which results in the viability of the network operating with a reduced number of training days without compromising the model's performance. Such process is attained through a sliding window application. Furthermore, the developed methodology is applied in two case studies, both with 15-minute timesteps: the first one is composed by aggregated load profiles of Standard Low Voltage clients, including production and self-consumption units. This case study presents regular and very smooth load profile curves. The second case study concerns a touristic island and represents an irregular load curve with high granularity with abrupt variations. From the attained results, it is evaluated the impact of integrating a recursive intelligent feature selection routine, followed by an assessment on the sliding window application and at last, a comparison on the errors coming from different estimators for the model, through several well-defined performance metrics

    Analysing and forecasting tourism demand in Vietnam with artificial neural networks

    Get PDF
    Mestrado APNORVietnam has experienced a tourism boom over the last decade with more than 18 million international tourists in 2019, compared to 1.5 million twenty-five years ago. Tourist spending has translated into rising employment and income for the tourism sector, making it the key driver to the socio-economic development of the country. Facing the COVID-19 pandemic, Vietnam´s tourism has suffered extreme economic losses. However, the number of international tourists is expected to reach the pre-pandemic levels in the next few years after the COVID-19 pandemic subsides. Forecasting tourism demand plays an essential role in predicting future economic development. Accurate predictions of tourism volume would facilitate decision-makers and managers to optimize resource allocation as well as to balance environmental and economic aspects. Various methods to predict tourism demand have been introduced over the years. One of the most prominent approaches is Artificial Neural Network (ANN) thanks to its capability to handle highly volatile and non-linear data. Given the significance of tourism to the economy, a precise forecast of tourism demand would help to foresee the potential economic growth of Vietnam. First, the research aims to analyse Vietnam´s tourism sector with a special focus on international tourists. Next, several ANN architectures are experimented with the datasets from 2008 to 2020, to predict the monthly number of international tourists traveling to Vietnam including COVID-19 lockdown periods. The results showed that with the correct selection of ANN architectures and data from the previous 12 months, the best ANN models can forecast the number of international tourists for next month with a MAPE between 7.9% and 9.2%. As the method proves its forecasting accuracy, it would serve as a valuable tool for Vietnam´s policymakers and firm managers to make better investment and strategic decisions to promote tourism after the COVID-19 situation.O Vietname conheceu um boom turístico na última década com mais de 18 milhões de turistas internacionais em 2019, em comparação com 1,5 milhões há vinte e cinco anos. As despesas turísticas traduziram-se num aumento do emprego e de receitas no sector do turismo, tornando-o no principal motor do desenvolvimento socioeconómico do país. Perante a pandemia da COVID-19, o turismo no Vietname sofreu perdas económicas extremas. Porém, espera-se que o número de turistas internacionais, pós pandemia da COVID-19, atinja os níveis pré-pandémicos nos próximos anos. A previsão da procura turística desempenha um papel essencial na previsão do desenvolvimento económico futuro. Previsões precisas facilitariam os decisores e gestores a otimizar a afetação de recursos, bem como o equilíbrio entre os aspetos ambientais e económicos. Vários métodos para prever a procura turística têm sido introduzidos ao longo dos anos. Uma das abordagens mais proeminentes assenta na metodologia das Redes Neuronais Artificiais (ANN) dada a sua capacidade de lidar com dados voláteis e não lineares. Dada a importância do turismo para a economia, uma previsão precisa da procura turística ajudaria a prever o crescimento económico potencial do Vietname. Em primeiro lugar, a investigação tem por objetivo analisar o sector turístico do Vietname com especial incidência nos turistas internacionais. Em seguida, várias arquiteturas de ANN são experimentadas com um conjunto de dados de 2008 a 2020, para prever o número mensal de turistas internacionais que se deslocam ao Vietname, incluindo os períodos de confinamento relacionados com a COVID-19. Os resultados mostraram, com a correta seleção de arquiteturas ANN e dados dos 12 meses anteriores, os melhores modelos ANN podem prever o número de turistas internacionais para o próximo mês com uma MAPE entre 7,9% e 9,2%. Como o método evidenciou a sua precisão de previsão, o mesmo pode servir como uma ferramenta valiosa para os decisores políticos e gestores de empresas do Vietname, pois irá permitir fazer melhores investimentos e tomarem decisões estratégicas para promover o turismo pós situação da COVID-19

    Solar Thermal Collector Output Temperature Prediction by Hybrid Intelligent Model for Smartgrid and Smartbuildings Applications and Optimization

    Get PDF
    Currently, there is great interest in reducing the consumption of fossil fuels (and other non-renewable energy sources) in order to preserve the environment; smart buildings are commonly proposed for this purpose as they are capable of producing their own energy and using it optimally. However, at times, solar energy is not able to supply the energy demand fully; it is mandatory to know the quantity of energy needed to optimize the system. This research focuses on the prediction of output temperature from a solar thermal collector. The aim is to measure solar thermal energy and optimize the energy system of a house (or building). The dataset used in this research has been taken from a real installation in a bio-climate house located on the Sotavento Experimental Wind Farm, in north-west Spain. A hybrid intelligent model has been developed by combining clustering and regression methods such as neural networks, polynomial regression, and support vector machines. The main findings show that, by dividing the dataset into small clusters on the basis of similarity in behavior, it is possible to create more accurate models. Moreover, combining different regression methods for each cluster provides better results than when a global model of the whole dataset is used. In temperature prediction, mean absolute error was lower than 4 ∘ C.info:eu-repo/semantics/publishedVersio

    Forecasting Energy Demand & Peak Load Days with the Inclusion of Solar Energy Production

    Get PDF
    The addition of solar panels to forecasting energy demand and peak energy demand presents an entirely new challenge to a facility. By having to account for the varying energy generation from the solar panels on any given day based on the weather it becomes increasingly difficult to accurately predict energy demand. With renewable energy sources becoming more prevalent, new methods to track peak energy demand are needed to account for the energy provided by renewable sources. We know from previous research that Artificial Neural Networks (ANN) and Auto Regressive Integrated Moving Average (ARIMA) models are both capable of accurately forecasting building demand and peak electric load days without the presence of solar panels. The goal of this research was to take three different approaches for both the ANN model and the ARIMA model to find the most accurate method for forecasting monthly energy demand and peak load days while considering the varying daily solar energy production. The first approach used was to forecast net demand outright based on relevant historical training data including weather information that would help the models learn how this information affected the overall net demand. The second approach was to forecast the building demand specifically based on the same relevant historical data and then use a random decision tree forest to predict the cluster of day that each day of the month would be in terms of solar production (high, medium with early peak, medium with late peak, low). After the type of day was predicted we would subtract the average solar energy production of the predicted cluster to receive our forecasted net demand for that day. The third approach was similar to the second, but instead of subtracting the average of the cluster we subtracted multiple randomly generated days from that cluster to provide multiple overlapping forecasts. This was specifically used to try and better predict peak load days by testing the hypothesis that if 80% or higher predicted a peak day it would in fact be a peak day. The ANN model outperformed the ARIMA for each approach. Forecasting multiple days was the best of the three approaches. The multiple day ANN forecast had the highest balanced accuracy and sensitivity, the net demand ANN approach was the 2nd most accurate approach and the average solar ANN forecast was the 3rd best approach in terms of balanced accuracy and sensitivity. Based on the outcomes of this study, consumers and institutions such as RIT will be better able to predict peak usage days and use preventative measures to save money by reducing their energy intake on those predicted days. Another benefit will be that energy distribution companies will be able to accurately predict the amount of energy customers with personal solar panels will need in addition to the solar energy they are using. This will allow a greater level of reliability from the providers. Being able to accurately forecast energy demand with the presence of solar energy is going to be critical with the ever-increasing usage of renewable energy
    corecore