2,009 research outputs found

    Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series

    Get PDF
    Automated monitoring systems that can capture wetlands’ high spatial and temporal variability are essential for their management. SAR-based change detection approaches offer a great opportunity to enhance our understanding of complex and dynamic ecosystems. We test a recently-developed time series change detection approach (S1-omnibus) using Sentinel-1 imagery of two wetlands with different ecological characteristics; a seasonal isolated wetland in southern Spain and a coastal wetland in the south of France. We test the S1-omnibus method against a commonly-used pairwise comparison of consecutive images to demonstrate its advantages. Additionally, we compare it with a pairwise change detection method using a subset of consecutive Landsat images for the same period of time. The results show how S1-omnibus is capable of capturing in space and time changes produced by water surface dynamics, as well as by agricultural practices, whether they are sudden changes, as well as gradual. S1-omnibus is capable of detecting a wider array of short-term changes than when using consecutive pairs of Sentinel-1 images. When compared to the Landsat-based change detection method, both show an overall good agreement, although certain landscape changes are detected only by either the Landsat-based or the S1-omnibus method. The S1-omnibus method shows a great potential for an automated monitoring of short time changes and accurate delineation of areas of high variability and of slow and gradual changes

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    Mapping intra- and inter-annual dynamics in wetlands with multispectral, thermal and SAR time series

    Get PDF
    Kartierung der intra- und interannuellen Dynamik von Feuchtgebieten mit multispektralen, thermischen und SAR-Zeitreihen Die Analyse der aktuellen räumlichen Verbreitung und der zeitlichen Entwicklung von Feuchtgebieten stellt eine äußerst komplexe Aufgabe dar, welche durch die Saisonalität, die schwierige Zugänglichkeit und die besonderen Eigenschaften als Ökoton bedingt ist. Erdbeobachtungssysteme sind somit das am besten geeignete Werkzeug, um zeitliche und räumliche Muster von Feuchtgebieten auf globaler Ebene zu beobachten (saisonale Veränderungen und Langzeit-Trends) und um den Einfluss der menschlichen Aktivitäten auf ihre physischen und biologischen Eigenschaften zu untersuchen. Zur Kartierung von raum-zeitlichen Mustern wurden Zeitreihen von Radar- (Sentinel-1), Multispektral- (Sentinel-2) und Thermal-Satellitendaten (MODIS) in fünf Untersuchungsgebieten, mit für Feuchtgebiete unterschiedlichen typischen Charakteristika, untersucht. In Kapitel 1 werden die Problematik in Bezug auf die Definition von Feuchtgebieten erläutert und allgemeine Degradations-Trends beschrieben. Die Kapitel 2 und 3 behandeln einen Algorithmus, der Veränderungen mithilfe von SAR-Zeitreihen feststellt, sowie die Vorteile des Cloud-Computings für das operationelle Monitoring saisonaler Muster und die Erkennung kurzfristig auftretender Veränderungen. In den Kapiteln 4 und 5 werden die zwei Hauptursachen für den Verlust von Feuchtgebieten betrachtet: der Staudammbau und die Ausdehnung landwirtschaftlicher Flächen. In Kapitel 4 werden dichte Zeitreihen multispektraler (Sentinel-2) und SAR-Daten (Sentinel-1) verwendet, um die Feuchtgebiete Albaniens – eines Landes in dem konträre Pläne zum Ausbau seines Wasserkraftpotentials und dem Schutz intakter Flussökosysteme zu Spannungen führen – landesweit zu kartieren. Die synergetischen Vorteile, die sich durch die Fusionierung von multispektralen und SAR-Daten für die Klassifikation ergeben, werden dabei herausgestellt. Kapitel 5 veranschaulicht, dass die Kilombero-Überschwemmungsebene in Tansania ein großes und bedeutendes Feuchtgebiet ist, das in den vergangenen Jahren infolge der weitgehend unkontrollierten Ausbreitung landwirtschaftlicher Flächen in seiner Ausdehnung und seiner Ökologie stark beeinträchtigt wurde. Um die Auswirkungen der Landnutzungsänderungen des Feuchtgebietes während der vergangenen 18 Jahre zu analysieren, wurden eine Zeitreihe (2000 bis 2017) thermaler Daten (MODIS) analysiert. Die drei für die Zeitreihenanalyse angewandten Modelle zeigen, wie landwirtschaftliche Praktiken die Landoberflächentemperatur in den landwirtschaftlich genutzten Gebieten sowie in den angrenzenden natürlichen Feuchtgebieten erhöht haben.Due to wetlands’ seasonality, their difficult access and ecotone character, determining their actual extension and trends over time is a complex task. Earth Observation systems are the most appropriate tool to monitor their spatio-temporal patterns (seasonal changes and long term trends) at global scales, and to study the effects that human activities have in their physical and biological properties. In this work I use time series of radar (Sentinel-1), multispectral (Sentinel-2) and thermal (MODIS) imagery to map the spatio-temporal patterns in 5 wetlands of different characteristics. First, I introduce in chapter 1 the problematic of wetlands’ definitions and their degradation trends. I continue with a brief introduction on remote sensing, time series analysis, and their applications on wetlands’ research and management. In chapters 2 and 3 I implement an algorithm for change detection of time series of Sentinel-1 images and demonstrate the advantages of cloud computation for operational monitoring. In chapters 4 and 5 I address two of the main causes of wetland degradation: dam building and agricultural expansion. In chapter 4 I use dense time series of Sentinel-1 and Sentinel-2 images map all the wetlands of Albania; a country struggling between developing its large hydropower potential or preserving its intact and valuable river ecosystems. I evaluate the synergic advantages of fusing multispectral and radar imagery in combination with knowledge-based rules to produce classification of higher thematic and spatial resolutions. In chapter 5 I present how the Kilombero Floodplain, in Tanzania, has been degraded during the last years due to uncontrolled farmland expansion. I use a time series of thermal imagery (MODIS) from 2000 until 2017 to analyze the effect of land use changes on the wetland. I compare three models for time series analysis and reveal how farming practices have increased the surface temperature of the farmed area, as well as in adjacent natural wetlands.Mapeo de las dinámicas inter- e intra-anuales en humedales con series temporales de imágenes multiespectrales, termales y de radar Debido a la estacionalidad de los humedales, su difícil acceso y sus características de ecotono, determinar su actual extensión y sus tendencias a lo largo del tiempo es una tarea compleja. Los sistemas de observación terrestres son la herramienta más apropiada para monitorear sus patrones espacio-temporales (estacionalidad y tendencias a largo plazo) a escalas globales, y para estudiar los efectos que las actividades humanas causan en sus propiedades físicas y biológicas. En esta tesis uso series temporales de imágenes radar (Sentinel-1), multiespectrales (Sentinel-2) y termales (MODIS) para mapear los patrones espacio-temporales de 5 humedales de diferentes características. En el capítulo 1 describo los retos que derivan de las diferentes definiciones que existen de los humedales. También presento las tendencias globales de degradación que la mayoría de los humedales continúan experimentando en los últimos años. Continúo con una breve introducción de los sistemas de teledetección remota, análisis de series temporales, y sus aplicaciones a la investigación y gestión de los humedales. En los capítulos 2 y 3 implemento un algoritmo de detección de cambios para series temporales de imágenes radar, y muestro las ventajas de usar sistemas de computación en la nube para monitorear cambios en la cobertura del suelo a corto plazo. En los capítulos 4 y 5 trato con dos de las causas más comunes de degradación de humedales: la construcción de presas y la expansión de la agricultura. En el capítulo 4 uso series temporales de imágenes multiespectrales (Sentinel-2) y radar (Sentinel-1) para mapear todos los humedales Albania; un país que se debate entre desarrollar su potencial hidroenergético o preservar sus valiosos e intactos ecosistemas de rivera. Mediante la fusión de imágenes radar y multiespectrales y el uso de reglas de decisión genero un mapa de suficiente resolución espacial y temática para que pueda ser usado por sectores interesados y gestores. En el capítulo 5 presento como las llanuras inundables de Kilombero, en Tanzania, han sido degradadas durante los últimos años debido a la expansión incontrolada de la agricultura. Usando series temporales de imágenes termales (MODIS) desde 2000 hasta 2017 y mapas de cambios de usos del suelo, determino los efectos que estos cambios han tenido en el humedal. Comparo 3 modelos diferentes de análisis de series temporales y muestro cómo la expansión de la agricultura ha incrementado la temperatura superficial terrestre, no solo de la zona cultivada, sino también de zonas adyacentes aún naturales

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Applications 28 (2018): 749-760, doi: 10.1002/eap.1682.The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.National Center for Ecological Analysis and Synthesis (NCEAS); National Aeronautics and Space Administration (NASA) Grant Numbers: NNX16AQ34G, NNX14AR62A; National Ocean Partnership Program; NOAA US Integrated Ocean Observing System/IOOS Program Office; Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM) Grant Number: MC15AC0000

    Remote Detection of Disturbance from Motorized Vehicle Use in Appalachian Wetlands

    Get PDF
    Wetland disturbance from motorized vehicle use is a growing concern across the Appalachian coalfields of southwestern Virginia and portions of adjacent states, particularly as both extractive industries and outdoor recreation development expand in regional communities. However, few attempts have been made in this region or elsewhere to adapt approaches that can assist researchers and land managers in remotely identifying and monitoring wetland habitats disturbed by motorized vehicle use. A comparative analysis of wetlands impacted and unimpacted by off-road vehicle activity at a public recreation area in Tazewell County, Virginia was conducted to determine if and how a common, satellite-derived index of vegetation health, normalized difference vegetation index (NDVI), can remotely detect wetland disturbance. NDVI values were consistently lower in wetlands impacted by several years of off-road vehicle use when compared to adjacent, unimpacted sites, with statistically-significant NDVI coldspots growing in size in impacted wetlands across the same time period. While considerations exist related to the resolution of data sources and the identification of specific modes of disturbance, NDVI and associated spatial analysis tools may provide a simple and cost-effective way for researchers and land managers to remotely monitor rates of wetland disturbance across mountainous portions of the eastern United States
    corecore